Beer recovery from surplus yeast
GEA cross-flow filtration with robust ceramic membranes are used for the effective recovery of beer from tank bottoms. Modular plants are supplied on compact skids in three standard sizes with processing capacities of approximately 250 hl, 500 hl and 1000 hl per day depending on the dry solids content of the product.
Using a standard plant design reduces the investment costs and increases profitability for the user. The technology has become trusted in the market with many reference sites worldwide.
GEA custom designs membrane filtration systems that best utilize the technologies of microfiltration, ultrafiltration, nanofiltration, or reverse osmosis for each customer's specific application.
Condensate from evaporation plants is used as boiler feed water, process, cooling, and rinsing water or is directly discharged into a drainage ditch. For this purpose, the condensate must be purified. Impurities in the condensate can be removed by membrane filtration, in the particular case by reverse osmosis, and high condensate qualities can be...
Supporting small to large feed rates, and configurable for both batch and continuous processes, the dedicated AromaPlus system is built on our reverse osmosis (RO) membrane filtration technology.
GEA’s cross-flow membrane filtration units have been specifically designed to deliver a clear, colorless, tasteless and aroma-free neutral alcoholic base. The neutral alcohol base used in a hard seltzer derives from a fermentation process with no distillation step.
Looking to the future of beer for our 150th
The impact of global warming is increasingly apparent all over the world. Towns and cities everywhere face the same challenge: providing their communities with reliable, affordable, sustainably sourced heat. GEA spoke with an expert in the field, Kenneth Hoffmann, Manager, Heat Pumps at GEA Heating & Refrigeration Technologies, about tackling global warming faster.
Something caught Farmer Tom's eye. Instead of another product demo, GEA showcased innovations via AR. That's only the start of GEA's interactive digital farm.
GEA scientists are working with researchers at the Graz University of Technology to configure a homogenization process and technology that turns eucalyptus pulp into 3D-printed, organic structures mimicking human veins, arteries and other tissues.