Beer recovery from surplus yeast
GEA cross-flow filtration with robust ceramic membranes are used for the effective recovery of beer from tank bottoms. Modular plants are supplied on compact skids in three standard sizes with processing capacities of approximately 250 hl, 500 hl and 1000 hl per day depending on the dry solids content of the product.
Using a standard plant design reduces the investment costs and increases profitability for the user. The technology has become trusted in the market with many reference sites worldwide.
GEA custom designs membrane filtration systems that best utilize the technologies of microfiltration, ultrafiltration, nanofiltration, or reverse osmosis for each customer's specific application.
Condensate from evaporation plants is used as boiler feed water, process, cooling, and rinsing water or is directly discharged into a drainage ditch. For this purpose, the condensate must be purified. Impurities in the condensate can be removed by membrane filtration, in the particular case by reverse osmosis, and high condensate qualities can be...
Supporting small to large feed rates, and configurable for both batch and continuous processes, the dedicated AromaPlus system is built on our reverse osmosis (RO) membrane filtration technology.
GEA’s cross-flow membrane filtration units have been specifically designed to deliver a clear, colorless, tasteless and aroma-free neutral alcoholic base. The neutral alcohol base used in a hard seltzer derives from a fermentation process with no distillation step.
Looking to the future of beer for our 150th
Resource-efficient fashion has been a long-sought ambition amid the fashion industry’s considerable contributions to global carbon emissions. The need to close the loop by recycling textile fibers into virgin-like materials is higher than ever but seemed like a distant dream until now: Circ, GEA’s American customer and pioneer in the field of textile recycling, might be rewriting the future of the fashion industry.
Alternative proteins are promising – yet still expensive to produce. The usual response is that scaling up will solve this issue. But what if the solution was really about getting better, not just bigger? From more efficient, high-yield processes to upcycling waste heat, engineers are reshaping how we grow food.
As anti-cancer drugs become more powerful and complex, GEA is redefining how to safely freeze-dry these life-saving treatments.