Nutraceuticals
Enzymes, defined as macromolecular biological catalysts, are responsible for thousands of metabolic processes and are located in every living cell. Highly selective, they accelerate both the rate and specificity of metabolic reactions, from the digestion of food (breaking down starch, protein, fat or sugar) to the synthesis of DNA without being expended themselves. Most enzymes are proteins, although catalytic RNA molecules have been identified.
The rupture of microbial cells is an essential first step in this process and the increasing use of high-pressure homogenization to obtain intracellular enzymes and organelIes is gaining in importance. It enables the extraction of intracellular substances without needing to use solvents or other chemicals to initiate cell wall breakage.
The separators and decanters from GEA ensure that the intracellular and extracellular enzymes are separated undamaged and in high concentrations.
Glucose isomerase is an example of an enzyme which converts glucose into fructose and is highly significant in the starch industry. The enzyme is produced and remains in the cells of the employed microorganisms. To process it, the liquid phase of the fermentation broth is separated by centrifuging after fermentation. The concentrated microorganisms are treated further after centrifuging. The cell walls are broken down. Depending on the consistency of the suspension, it is diluted before the cell fragments are separated by continuously operating separators.
Separators and decanters from GEA are ideal for the optimum treatment of washing powder enzymes. Carefully purified and sterilized air is injected into a fermenter equipped with an agitator. The air bubbles are distributed in the nutrient solution, which is composed of carbohydrates, protein, growth agents and nutrients. This is sterilized, heated to an optimum temperature and then inoculated with the purified culture of a non-pathogenic microorganism. The microorganisms nourish themselves by converting the substances and simultaneously produce the enzymes. These are then excreted to the fermentation broth. After fermentation, the microorganisms are separated by adding a flocculent and centrifuging with separators and decanters. Succeeding stages of washing and polishing with centrifuges further increase the yield and the purity of the enzymes.
Showing 4 of 13
Aseptic valves face exceptionally high demands within UltraClean and Aseptic processes. You can be assured that they all provide highest quality in terms of hygienic design and sustainability.
GEA separators are designed for liquid-based applications. Using centrifugal force, they are used for separating suspensions consisting of two or more phases of different densities, i.e. they can be used for liquid-liquid separation, for liquid-liquid-solid separation or for liquid-solid separation. They are equally as effective at separating liq...
Innovative CIP concepts of GEA meet comprehensive high standards. Our experts guarantee product safety at every point of the process. Every upgrade is adapted to individual local conditions and customer requirements and leads to noticeable savings.
GEA compression heads are the homogenizer pulsing core since they activate the homogenization process pumping the product at high pressure until it flows inside the homogenizing valve.
GEA AddCool® installation cuts CO2 emissions associated with the operation of a spray dryer plant by 1,500 tons per year at Arla’s milk powder factory in Svenstrup, Denmark.
On Sept. 30, 2025, GEA rang the opening bell at the Frankfurt Stock Exchange, a symbolic moment that highlighted the company’s inclusion in Germany’s leading stock index, the DAX.
GEA’s new corporate headquarters in the up-and-coming Derendorf neighborhood of Düsseldorf, Germany, brings together people, ideas and expertise under one roof. With its open spaces, green terraces and energy-efficient design, the building reflects the company’s commitment to collaboration and sustainability.