Catalytic gas cleaning
GEA is well known for its long-term proven application of Selective Catalytic Reduction (SCR) for NOx control.
GEA develops and manufactures highly efficient denitrification systems, tailor-made to customer needs. The SCR technology is the best available NOx removal (DeNOx) process, it selectively reduces NOx emissions by injecting Ammonia into the exhaust gas upstream of a catalyst.
Current and future requirements on NOx and VOC control are met with GEA’s advanced catalytic reduction technology. The high-activity catalyst and low-pressure drop result in a cost-effective NOx reduction.
An aqueous ammonia solution or urea is injected through two-fluid nozzles (ammonia/compressed air) and into the ductwork upstream of the SCR where it immediately evaporates. The adequate mixing of ammonia is ensured by a static mixer installed in the ductwork downstream of the ammonia injection points. The gas and ammonia mixture enters the unit from the top and exits horizontally at the bottom.
A gas distribution system (swirl breaker) ensures an adequate gas distribution over the entire cross-section of the unit. The reaction between ammonia and NOX is enhanced by the presence of the catalyst bed, converting it into nitrogen (N2) and water. The catalyst is cleaned in an intermittent fashion (in 24-hour intervals), if required. The ammonia feed rate is controlled by the NOX outlet concentration of the gas.
The SCR in the glass industry is situated after the dedusting system and can also be installed in already existing plants.
GEA offers the SCR for cement plants in low-dust arrangement, situated after the bag filter or electrostatic precipitator.
As the temperature after dedusting can be quite low, a gas-gas-heater is required (recuperative or regenerative) to preheat the gas.
The temperature needs to be further heated up to the temperature required for the DeNox-catalyst. This can be achieved either by an internal heat source from preheater waste gas or clinker cooler waste gas or by an external heat source such as a natural gas burner.
BisCat ceramic filters with an embedded catalyst matrix consists of vanadium pentoxide, allow for the removal of particulates, sorption processes for acidic gases, reduction of NOX and the decomposing of dioxins, VOC`s. The filter elements are chemically inert and corrosion resistant. Gas cleaning in one step. A multifunctional filter for the sim...
Bagfilters are the technology of choice in many cases when low dust content is needed for gas cleaning. Their ability to remove large Ioads on a non-selective basis has made them important for many applications.
Companies like GEA process and store large amounts of sensitive data. However, security incidents, from ransomware attacks to physical intrusions and industrial espionage, are ever-expanding. GEA’s effective protection of its business partners’ data – as well as its own proprietary information – is evolving into a competitive advantage. We spoke with Iskro Mollov, GEA’s Chief Information Security Officer, about what it takes to protect a global business in a volatile world.
Resource-efficient fashion has been a long-sought ambition amid the fashion industry’s considerable contributions to global carbon emissions. The need to close the loop by recycling textile fibers into virgin-like materials is higher than ever but seemed like a distant dream until now: Circ, GEA’s American customer and pioneer in the field of textile recycling, might be rewriting the future of the fashion industry.
Alternative proteins are promising – yet still expensive to produce. The usual response is that scaling up will solve this issue. But what if the solution was really about getting better, not just bigger? From more efficient, high-yield processes to upcycling waste heat, engineers are reshaping how we grow food.