Distillation Technology
GEA applies three methods to achieve concentrations above the azeotropic point.
GEA Molecular Sieve or Adsorption Technology represents a low energy process for dehydration of e.g. ethanol.
The superheated alcohol/water mixture passes a zeolite bed , that holds back the small water molecules while the bigger alcohol molecules pass the bed.
GEA supplies as standard three adsorption vessels which operate in continuous batch mode. One unit works in adsorption mode while the second is regenerated. The third vessel allows smooth switching between the two modes in order to ensure a long life service for the zeolite. Another advantage of the third vessel is a constant flow of the dehydrated ethanol vapors towards the distillation train, leading to a constant energy input on one of the reboilers, where the vapor is condensed.
But also the two-vessel-concept has proven itself within a multistage distillation plant , however not achieving as constant conditions as the three-vessel-concept.
The GEA Distillation with Entrainer represents a second technology for achieving concentrations above the azeotropic point of mixtures – or for mixtures of two very similar behaving compounds.
An example is the azeotropic distillation of IPA/ water-mixtures. Cyclohexan is added to the mixture and creates with the water a new azeotropic mixture. This new azeotrop can can be rectified and is discharged as head product. The dehydrated IPA is discharged from the column bottom. In the entrainer recovery process the water is separated from the cyclohexane. The second application of the entrainer technology is the extractive distillation – according to the compound mixtures the adequate process and entrainer must be defined.
The core of the GEA Pervaporation and Permeation Technology is the hydrophilic membrane. A vacuum is created on one side of the membrane and the differing diffusion resistances through the membrane and the differing partial pressures are the basis for the separation.
GEA uses different types of reboilers for the energy input to the distillation columns. The choice of the suitable type depends on surrounding process and product parameters.
The thermal vapor recompression applies steam jets to raise the temperature level of vapor flows in the plant. Condensation of these boosted flows is then used for the heating or evaporating of lower temperature process flows. Thereby the steam consumption is minimized.
Production lines with optimized integrated process steps.
With state-of-the-art pilot plants and test benches our R & D Center is optimally equipped for testing in the fields of distillation technology.
What if your favorite chocolate didn’t require cocoa beans and your coffee was locally produced? As climate disruption, price hikes and ethical concerns hit two of our most beloved indulgences, scientists are reimagining how we produce them – using microbes, not monocultures. The goal: preserve the flavor and properties of coffee and chocolate while minimizing carbon emissions and improving food resilience.
Ports now compete not just on logistics, but on sustainability. At Greece’s Piraeus port, an advanced processing and recovery facility recycles ship waste oil into fuel. Equipped with GEA’s high-performance centrifuges, it sets a new benchmark for state-of-the-art, environmentally responsible port operations.
The 2022 CO2 shortage forced breweries to review their dependency on global supply chains. Many were forced to close, unable to carbonate their products. At its breweries in Germany, OeTTINGER GETRÄNKE is turning its own CO2 into a powerful lever for independence and sustainability – with the help of CO2 recovery technology from GEA.