As simple as the mashing process looks in principle, it is as complex as its various functions. When designing a mash vessel, all these functions are of considerable importance and must be taken into consideration. To guarantee that all requirements are met, our mash tuns and mash tun kettles have all the necessary technical process features. This starts with an equal temperature distribution over the mash contact area in the vessel, which is ensured by our specially designed vessel heating jackets. Should the brewhouse plant be equipped with our energy storage system, it is possible - with appropriate excess heat from wort boiling - to supply the mashing process with heat recovered from wort boiling vapors or from a combined heat and power plant. These fuel savings go hand-in-hand with an important technological advantage: the mash is heated up very gently via the additional, thermically optimized heat transfer areas in the vessel. This keeps the temperature of the interface region on the mash side extremely low.
Bushmills increases yield with the GEA LAUTERSTAR®
Looking to the future of beer for our 150th
Something caught Farmer Tom's eye. Instead of another product demo, GEA showcased innovations via AR. That's only the start of GEA's interactive digital farm.
GEA scientists are working with researchers at the Graz University of Technology to configure a homogenization process and technology that turns eucalyptus pulp into 3D-printed, organic structures mimicking human veins, arteries and other tissues.
Companies like GEA process and store large amounts of sensitive data. However, security incidents, from ransomware attacks to physical intrusions and industrial espionage, are ever-expanding. GEA’s effective protection of its business partners’ data – as well as its own proprietary information – is evolving into a competitive advantage. We spoke with Iskro Mollov, GEA’s Chief Information Security Officer, about what it takes to protect a global business in a volatile world.