Specific emission control processes
Mercury separation made simple — GEA DeMerc, a reliable mercury removal system in the non-ferrous metal industry

Separation of mercury — especially elemental mercury (Hg⁰) — from process and exhaust gas streams in the non-ferrous metal industry is critical due to mercury's toxicity, volatility, and persistence in the environment.
The first stage abate HG at the dry ESP for bulk removal of liquid followed by fine removal of liquid in the subsequent wet ESP section. Here remaining small liquid droplets are removed to ensure dry gas flows into the final mercury removal bed. This is vital for the long life of the bed media.
In the new third stage, the GEA DeMerc, this liquid-free gas flows into the mercury removal unit, where the elemental mercury is adsorbed by proprietary media adsorbent (GEA MercurySorb). In this filter bed the adsorption of Hg(0), Hg(I) and Hg(II) can be achieved and a Hg clean gas concentration ≤ 25 µg/m3 can be achieved. The usual abatement rate is ≥ 90 % over the runtime and the mercury is finally bound as mercuric sulfide.

1. High efficiency:
2. Operational simplicity:
3. Cost-effectiveness:
4. Scalability and flexibility:
The adsorption capacity on GEA MercurySorb depends on the process conditions and the type and concentration of mercury which has to be removed.
Other harmful compounds such as common hydrocarbons, styrene, vinyl chloride monomer, pesticides, chlorinated hydrocarbons etc. can be adsorbed very well.
If the process conditions are known, a prediction of the life time can be made. Alternatively the life time can be controlled by an emission control device which detects the breakthrough after the adsorber bed.
Continuous monitoring of Hg is essential in order to monitor all possible plant conditions and Mercury CEM systems are available and fulfill the required accuracy
GEA MercurySorb increase the available surface for mercury adsorption with the following advantages:

A suspension of fine solid particles or liquid droplets, in gas is called aerosol and can be separated by different working principles.

Bubble Columns feature a high liquid to gas volume ratio, beneficial when conducting rather slow reactions in the liquid phase as large reaction volumes can be realized. Ideal when dry spots must be avoided in the contactor.

The conversion of hot metal into steel produces CO-laden gases of high caloric value. The recovery of these gases means to save a considerable amount of energy. The LT-Steel Gas Process has established worldwide.

One of our most important activities in the refinery industry is gas cleaning for FCC units. GEA technologies combine engineering process engineering, environmental aspects and energy savings. Taken this into account, GEA offers clean air solutions while keeping the CAPEX/ OPEX low.
At Carlsberg’s Fredericia brewery, GEA VARIVENT valves are part of a long-game strategy. By reusing core valve bodies, retrofitting actuators and control tops, and planning maintenance around brewing seasons, Carlsberg extends asset life, reduces downtime and supports its ambitious water and sustainability targets.
In eastern Czechia, agricultural engineer Jan Urban is transforming dairy farming with GEA’s DairyProQ – a 50-stall automated milking system that boosts efficiency, animal welfare and sustainability, setting a new standard for modern milk production.
Costs for energy, water and raw materials are rising with efficiency becoming a decisive competitive factor. GEA identifies more resource-efficient successor solutions in a transparent way and has them independently validated. Now a portfolio of more than 50 products, what does it take to make the grade and how do customers benefit? GEA insiders share why these innovations are so transformative.