Specific emission control processes

Bubble column reactor

Bubble Columns allow to conduct and control chemical reactions in the liquid phase. Bubble Columns are often used when the liquid-phase reactions are rather slow in relation to the gas absorption rate.

bubble-column

In comparison to other gas/liquid contactors (e.g. spray or packed columns), Bubble Columns feature a high liquid to gas volume ratio. This is beneficial when conducting rather slow reactions in the liquid phase as large reaction volumes can be realized. 

Due to the high liquid inventory of the system the temperature of the reaction can be controlled very effectively, which is an advantage when temperature sensitive substances are to be produced.

Bubble Columns are also an ideal absorption system when dry spots must be avoided in the contactor (e.g. when crystallization can occur), which can cause blockages in conventional mass transfer equipment. GEA has developed a special non-blocking gas sparger design in this respect. 

Furthermore, Bubble Column Reactors offer other benefits such as a simple operation without any moving parts; excellent mixing, high heat and mass transfer rates; low catalyst attrition rates and the ability to accommodate a wide range of residence time requirements.

Key features

  • No internals needed
  • Higher liquid content in the system compared to e.g. spray or packed columns
  • Gas phase = disperse phase
  • High enthalpy inventory generates a robust dynamic behavior
  • Various gas sparger designs possible
  • Static equipment, meaning low maintenance effort

Working Principle

Working Principle of Bubble Column
bubble-column-2d-working-principle

Bubble Columns are gas/liquid contactors in which the gas phase is the disperse phase, meaning the gas phase is distributed into the liquid at the bottom of the column by an appropriate distributor and then moves upwards in the form of bubbles causing an intense intermixing of the gas and the liquid phase in the system.

In a Bubble Column the gas is sparged into the liquid in the form of bubbles without mechanical agitation. The configuration of a gas sparger is important since it determines the properties (e.g. size) of bubbles, which in turn affect gas holdup values and other parameters related to Bubble Columns.

Bubble Columns can be used for either absorption of gases into liquids, conducting chemical reactions in the liquid phase with or without an additional catalyst, simply mixing two or more phases or when liquid reactant products are to be stripped out of a liquid phase.

Downloads

GEA Insights

GEA misison 30 logo

A strategy for the better: CEO interview on GEA's Mission 30

Blu-Red software accelerates climate-friendly energy tech

Blu-Red software accelerates climate-friendly energy tech

Shaping the future of sustainable wood fiber insulation production

Shaping the future of sustainable wood fiber insulation production

Receive news from GEA

Stay in touch with GEA innovations and stories by signing up for news from GEA.

Need assistance?

We are here to help! With just a few details we will be able to respond to your inquiry.