Distillation Technology

Dehydration and Purification

GEA applies three methods to achieve concentrations above the azeotropic point.

dehydration-and-purification-01
Where product purities superior to feasible concentrations through rectification are required, one of these technologies come to operation: Molecular Sieve Technology, Distillation with Entrainer, or Membrane Processes (Pervaporation and Vapor Permeation).

GEA Molecular Sieve or Adsorption Technology represents a low energy  process for dehydration of e.g. ethanol.

The superheated alcohol/water mixture passes a zeolite bed , that holds back the small water molecules  while the bigger alcohol molecules pass the bed.

GEA supplies as standard three adsorption vessels which operate in continuous batch mode.  One unit works in adsorption mode while the second is regenerated. The third vessel allows smooth switching between the two modes in order to ensure a long life service for the zeolite. Another advantage of the  third vessel is a constant flow  of the dehydrated ethanol vapors towards the distillation train, leading to a constant energy input  on one of the reboilers,  where the vapor is condensed.

But also the  two-vessel-concept  has proven itself within a multistage distillation plant , however not achieving as constant conditions as the three-vessel-concept.

The GEA Distillation with Entrainer represents a second technology for achieving concentrations above the azeotropic point of mixtures – or for mixtures of two very similar behaving compounds.

An example is the azeotropic distillation of IPA/ water-mixtures.  Cyclohexan is added to the mixture and creates  with the water a new  azeotropic mixture. This new azeotrop can can be rectified and is discharged as head product.  The dehydrated IPA  is discharged from the column bottom. In the entrainer recovery process the water is separated from the cyclohexane. The second application of the entrainer technology is the extractive distillation – according to the compound mixtures  the adequate process and entrainer must be defined.

The core of the GEA Pervaporation and Permeation Technology is the  hydrophilic membrane. A vacuum is created on one side of the membrane and the differing diffusion resistances through the membrane and the differing partial pressures are the basis for the separation.

GEA Insights

Josep Masramón and his daughter stand in front of their GEA batch milking installation.

How batch milking supports sustainable dairy farming

The latest evolution in automated milking introduces batch milking – a dairy farming practice where cows are milked in groups at fixed milking times, usually two or three times per day. The automation technology is helping to...

GEA supports clean water projects in Tanzania

Access to safe water and sanitation is still a challenge in a lot of countries. Illness from dirty drinking water and daily treks to fetch it, mean many children cannot attend school. Thanks to a collaboration with Hamburg-based...

GEA employees are people with purpose

In pursuit of its core mission – Engineering for a better world – GEA is building an employer of choice culture that offers employees the opportunity to reimagine solutions, collaborate across disciplines and contribute to a...

Receive news from GEA

Stay in touch with GEA innovations and stories by signing up for news from GEA.

Contact us

We are here to help! With just a few details we will be able to respond to your inquiry.