Mass Crystallization
from solutions
Content

04 GEA Messo PT in the field of crystallization
05 Crystallization in history and presence
06 Crystallization in theory and practice
10 Types of crystallizers
 Forced circulation crystallizer
 DTB crystallizer
 OSLO crystallizer
 Peripheral components
13 Application examples
 Surface cooling crystallization
 Vacuum cooling crystallization
 Evaporative crystallization
16 Modern applications
 Flue gas desulfurization (FGD)
 Recovery of caffeine
 Salt from secondary aluminum slag
 Ammonium sulfate from the caprolactam process
18 Research and development services
19 Product experience
Individual plants for the chemical, pharmaceutical and food processing industries
(Unit operation, evaporation, crystallization, thermocompression)
- Crystallization plants
- Evaporation plants (for concentration of solutions prone to formation of scaling)

Crystallization and evaporation technologies for the chemical, pharmaceutical
and food processing industries, e.g.:
(Entire technology concepts, based on precipitation, evaporation, crystallization)
- Common salt production plants
- Reaction crystallization plants for several base/acid reactions

Plants for environmental protection
(Based on precipitation, evaporation, crystallization)
- Pickling bath liquor recycling plants
- Landfill leachates concentration plants
- Industrial waste water ZLD plants
- Treatment plants for slags from the secondary aluminum industries
GEA Messo PT is well established as globally recognized technology supplier and plant constructor in the field of solution and melt crystallization and related concentration technologies with focus on business activities to a selected range of industrial applications. GEA Messo PT has been established as a recent merger of the German based GEA Messo GmbH and the Netherlands based GEA Niro PT B.V.. GEA Messo PT combines the two technology centers for solution crystallization (MESSO) and melt crystallization/freeeze concentration (NIRO PT) allowing to use all cross-fertilizing synergies between solution and melt crystallization. At the same time, our customers profit from a better support out of larger and consolidated departments in sales, project management, services and administration. Experience counts for a lot in the implementation of crystallization systems and our combined track record makes GEA Messo PT the supplier of choice for many of our customers.

In the field of mass crystallization from solutions, GEA Messo PT’s expertise encompasses all basic types of crystallizers for the crystallization from solutions, such as the forced circulation or draft-tube (MSMPR) crystallizer, the turbulence (DTB) crystallizer, and the fluidized bed (OSLO) crystallizer. GEA Messo PT is thus in an unique position to address the special needs of each of its clients, depending on the required product crystal quality and size. GEA Messo PT routinely supplies upstream and downstream components, such as the preconcentration (in multiple effect, mechanical vapour recompression, flash, and other evaporator configurations), the debrining (thickening, filtration or centrifugation), drying, solids handling and packaging. GEA Messo PT also supplies piping and instrumentation and process control systems for its plants, installations in prefabricated and modularized sections as required by the client.
GEA Messo PT is a leader in its field through in-depth reviews of its operating installations and research and development. The Research and Development Department of GEA Messo PT is housed in a three-hundred-square meter facility, equipped with test units that simulate batch and continuous operation of all basic types and configurations of crystallizers. It has in-house analytical capabilities for direct determination of concentration, supersaturation, and other physical properties of the subject process liquors. Not only the design of crystallizers but the development of optimized separation processes for our clients’ needs is in the focus of GEA Messo PT chemists and engineers.

Crystallization in History and Presence

In antiquity, settlements developed around, and exploited sites where salt was easily available, whether as rock, brine, or derived from solar evaporation. For example, salt was produced in the Pharaonic Egypt at the Nile Delta; similarly, the Romans recovered salt at Ostia seacoast (near Rome) and the same happened all over the world (e.g. in China). These and many other production sites prove that crystallization from solution is one of the oldest unit operations practiced by humankind.

While crystallization in solar ponds is still in regions with plentiful sunshine, its low production rate and mediocre product purity prevents this technology to be used generally. As the world developed through industrial age, the demand for crystalline chemicals increased in variety, quantity, and quality. This led to the birth of crystallization technology that aimed at improving the methods and equipment used in crystallization operations. Modern crystallizers can boost specific production rates that are several orders of magnitude higher than solar ponds, have low manpower requirements, and low production costs.

The specific requirements of a crystallizer can vary widely, depending on the nature of the product, and its intended use: pharmaceutical and food products require higher purity, for example, while fertilizers need larger crystal size; the crystal size and final moisture are not as important in crystallization systems which produce an intermediate compound. There are cases where the real product of the crystallizer is the solvent: crystallization is used to separate from the solvent the compounds that make it impure. Further, there are cases where crystallization is used to concentrate a solution, by crystallizing and removing the solvent (freeze concentration). One quality that is present in all crystallization systems, regardless of the final use of the solvent or the crystal, is the ability to separate the crystals from the mother liquor. This ability is a function of the crystal size, and, by extension, a function of the separation equipment that can be used. Centrifugation is by far the most efficient separation method, if the average crystal size is large enough. It is therefore logical to expect that of the characteristics of a crystallizer, the crystal size it produces is of great importance. The possible crystal size of a given compound is dependent on its chemical and physical properties, and those of the solution in which it is dissolved. In parallel, the crystal size is dependent on the equipment used to crystallize it, and the method by which the equipment is operated. The crystallizer used can contribute to improving the crystal size, within physical and energy boundaries, by controlling the nucleation, the attrition, and the growth rate of crystals, and by destroying a fraction of the smaller crystals present in the crystallizer itself. Inattention of these parameters, on the other hand, can contribute to a degradation of the crystal size.
A key parameter for crystallization is the supersaturation. Supersaturation is the temporary increase of concentration of the solute in the solvent above its equilibrium, and is produced by evaporation, cooling, chemical reaction, salting out, etc. The area over the normal solubility, in which a system can be supersaturated, is also called the "metastable" region. Supersaturation is the driving force of crystallization. Proper control of supersaturation is of critical importance in achieving acceptable results. The most common crystallization operations today are those of evaporative crystallization and of indirect and direct (vacuum) cooling: In the former, crystallization occurs after some amount of solvent is removed, and this is due to the relatively "flat" solubility of the system at hand (Fig. 1a). In the latter case, the solubility is rather steep (Fig. 1b), and supersaturation can be achieved by cooling easily.

The crystal growth rate, a parameter that measures how fast a crystal grows, is, for most systems, exponentially dependent on the supersaturation (Fig. 2). However, the end result of the crystal size obtained in a crystallizer is not a matter only of the growth rate, but also of the nucleation rate (how many crystals take part in crystal growth), and the attrition rate (how easily crystals break, and how small are the broken fragments). The nucleation rate is also a function of the supersaturation, and is affected by supersaturation to a far greater degree than the growth rate (Fig. 2). As a result of these very complex relationships, the supersaturation at which a crystallizer will operate must be chosen with great care.

There are two common types of nucleation mechanisms. Primary (homogeneous) nucleation occurs at the onset of crystallization, when the concentration of the solvent exceeds the metastable region, and secondary nucleation, which is caused by contacts between a crystal and another surface, and occurs within the metastable region (Fig. 2). Crystal-to-crystal and crystal-to-impeller contacts are the most common sources of secondary nucleation. Secondary nucleation is therefore affected by the mixing energy input to the crystallizer.

Combining these characteristics of crystallization, it can be said that large singular crystals are formed at low nucleation rates. Fig. 3 is a simplification (exaggerated for purposes of illustration) of this premise, and concerns two crystallizers that have the same amount of supersaturation, 10 g, from which crystals will grow. This is to demonstrate the strong influence of the nucleation rate on the mean crystal size. Due to the two different nucleation rates (5 nuclei and 40 nuclei) the result are two different crystal sizes; either 5 crystals of 2 g each or 40 crystals of 250 mg each.
Most crystallizers need to produce large singular crystals, because this improves crystal purity and handling characteristics, and very often the crystalline product’s marketability. To achieve a larger crystal size, it is therefore important to:

- Control the supersaturation in the crystallizer so that it does not exceed the metastable region;
- Choose an operating point of such supersaturation that growth rate is maximized;
- Optimize the mixing energy input so that supersaturation is controlled, while secondary nucleation is minimized.

As can be seen from the above, the method and intensity of mixing in a crystallizer is very critical, as it is what most influences the supersaturation and secondary nucleation of the system. Mixing, therefore, is a basic design feature in a crystallizer unit. The instantaneous operation cycle of a typical vacuum cooling FC crystallizer, with respect to the solubility of a system, is illustrated in Fig. 4. The fresh feed at temperature and concentration represented by point (1) enters the crystallizer and is mixed with the crystallizer contents that are at concentration and temperature (3). The resultant mixture is at point (2), passes through the pump, and reaches the boiling surface of the slurry in the crystallizer. Upon boiling, the solution reaches point (4), which is well into the metastable zone. The supersaturation generated in this way is consumed by crystal growth of crystals present in the crystallizer vessel, as the supersaturated liquid is cooled adiabatically to point (3), and the cycle is completed. Since it is important to maintain the peak supersaturation (point 3), and the cycle is completed. Since it is important to maintain the peak supersaturation (point 4) within the metastable zone, the location of point (2), and more importantly, that of point (4), can be adjusted, by designing the recirculation rate in the crystallizer.
If the supersaturation generated in one cycle is not completely consumed by the end of the cycle, the starting point for the next cycle will be somewhat further from the saturation curve. After some time, the whole cycle will migrate so far into or even above the metastable zone, that it will adversely affect crystal growth and nucleation. It is therefore important to provide sufficient opportunity (efficient mixing) and suitable sites (sufficient crystal surface) for the supersaturation to be consumed. Otherwise, the crystal size will suffer, and the crystallizer will be subject to incrustations.

These ideas are embodied in the two kinetic equations below. The mass deposition rate \(\frac{dm}{dt} \) resp. the consumed supersaturation per cycle time is dependent on the surface of suspended crystals \(A \) and on the level of supersaturation \(\Delta C \).

\[
\frac{dm}{dt} = k \cdot A \cdot \Delta C^m = -V \frac{d(\Delta C)}{dt}
\]
Secondary nucleation B_0 depends on dissipated mixing energy (ε, suspension density m) and level of supersaturation (ΔC):

$$B_0 = k_N \cdot \varepsilon^r \cdot m^i \cdot \Delta C^n$$

Crystal size is influenced by the time that the crystal stays in the crystallizer (retention time), where, under proper operating conditions, it may grow. There is, however, a competing quality in this arrangement that affects the crystal size adversely. Mechanical attrition (G_a) is the rate of removal of material from a crystal (as opposed to G_k, the linear, kinetic crystal growth rate), and it is dependent on the crystal retention time, the magma density, the mixing energy and the hydrodynamic design of the system. It is therefore to be expected that under certain conditions, crystal size will peak at a certain retention time, and will thereafter become smaller, as G_a overpowers G_k and the effective crystal growth rate is minimized.

$$G_{eff} = G_k + G_a$$
All this is considered in modern types of continuous crystallizers. Crystallizers with longer retention times are operated with less specific energy input, resulting in lower nucleation rates. The impacts between crystals and the impeller pump blades are the most effective source for the nuclei production. These impacts are at least 100-fold more effective than crystal/wall and crystal/crystal impacts. Therefore, types of crystallizers differ mainly in design and the position of the impeller pump.
Forced Circulation Crystallizer

The forced circulation ("FC") crystallizer (Fig. 5) is the most common type of crystallizer in the industry. The average FC crystallizer evaporates solvent, thus increasing the supersaturation in the process liquor, and causing crystallization to occur. Most conventional FC units operate under vacuum, or at slight super atmospheric pressure. The FC consists of four basic components: the crystallizer vessel, which provides most of the volume dictated by the residence time requirements, the circulating pump, which provides the mixing energy, the heat exchanger, which supplies energy to the crystallizer (in a typical evaporative crystallization operation), and the vacuum equipment, which handles the vapours generated in the crystallizer. Slurry from the crystallizer vessel is circulated, in plug flow fashion, through the heat exchanger, and returned to the crystallizer vessel again, where its supersaturation is relieved by deposition of material on the crystals present in the slurry. The supersaturation is controlled so as to avoid spontaneous nucleation, by sufficient circulation capacity. The evaporated solvent is conducted to the vacuum system, where it is condensed and removed. The FC crystallizer is used for general, simple crystallization operations, where large crystal size is not a requirement. The FC design aims to protect the crystal size from reduction from the crystallizer environment, but has no features to aggressively increase the crystal size.

Turbulence (DTB) Crystallizer

The GEA Messo PT DTB crystallizer (Fig. 6) is the typical modern type of crystallizer in the industry. This crystallizer has been named so because it provides for two discharge streams, one of slurry that contains the product crystals, and another, that is mother liquor (saturated solvent) with a small amount of fines. The configuration of the crystallizer is such that it promotes crystal growth, and can generate crystals of a larger average size than could be achieved in an FC. Most conventional DTB crystallizers operate under vacuum, or at slight super atmospheric pressure. DTB crystallizers have been studied widely in crystallization theory, and can be modelled with accuracy. Its distinct zones of growth and clarified mother liquor make it possible to define in terms of kinetic parameters, and thus growth and nucleation rates can be determined. These features make the DTB crystallizer very suitable to mathematical description, and thus subject to good operating control.

OSLO Crystallizer

This crystallizer type (Fig. 7) originally represented the first major step in modern crystallization technology and equipment design. It was invented by F. Jeremiassen of Krystal A/S, Oslo, Norway, in 1924, and it took the name of the city in which the design originated. It is also referred to as "growth-", "fluid-bed-", and "Krystal-" type. As the successor of Davy Powergas’ and A. W. Bamforth’s crystallization technology, MESSO owns all documentation of OSLO installations built by these two companies. This background, added to MESSO’s own extensive experience makes MESSO the premier designer of OSLO crystallizers in the world. The primary advantage of the OSLO crystallizer until today is the ability to grow crystals in a fluidized bed, which is not subject to mechanical circulation methods. A crystal in an OSLO unit will grow unhindered, to the size that its residence time in the fluid bed will allow. The result is that an OSLO crystallizer will grow the largest crystals, as compared to other crystallizer types. The slurry is removed from the crystallizer’s fluidized bed and sent to typical centrifugation sections. Clear liquor may also be purged from the crystallizer’s clarification zone, if necessary. From each of these basic types of crystallizers a number of different applications are designed from MESSO engineers to fulfil the special needs of the customers.
Peripheral Components

The crystallizer is the heart of a crystallization system, but there are several components, in the periphery, that need to be considered before the final product can be collected. The suspension from the crystallizer has to be separated, the crystals have to be dried and packed. The vapours have to be condensed and the non condensables to be extracted by vacuum pumps. Fig. 8 shows a simplified flow sheet of a complete crystallization plant operated on the principle of evaporative crystallization under vacuum. Depending on process considerations (crystal size, evaporative duty, etc.) one of several types of crystallizer can be installed instead of the FC crystallizer shown, including multiple-effect units. Instead of using steam for heating (as shown), one could utilize mechanical or thermal vapour recompression. In the illustration, the vapours from the (last) crystallizer are condensed in a surface condenser; however, a mixing condenser could be chosen, instead. The suspension in the crystallizer can be withdrawn by overflow, as shown, or pumped out, using pumps with special specifications. Because suspension densities are usually between 15 to 25%wt. in the crystallizer, while a centrifuge operates best at 50 to 60%wt. suspension, the suspension is preconcentrated in thickeners or hydrocyclones. The underflow of the thickener or hydrocyclone is sent to the centrifuge for separation.

Depending on the product CSD (and to a lesser degree on the physical properties of the suspension) there is a choice between types of centrifuges: generally, the decanter and peeler are used for smaller particles, and the screen bowl and the pusher for larger particles. In some cases of very small particle sizes or very fragile crystals, filters are used, instead of centrifuges. Filters, however, are usually not as efficient as centrifuges in separating the solvent from the crystals. The small amount of residual solvent left on the crystals after the separation step, is removed in a dryer. There are several types of dryers that are used, depending on separation, crystal chemistry (reactive nature, tendency to decompose, oxidize, etc.), crystal fragility, and initial solvent content. The most common types of dryers used are fluid bed (stationary or vibrating), and the flash dryer.
The selection of equipment and the design of a crystallization operation is dependent on, and influenced by several process-specific factors. The following examples illustrate how these factors influence the choice of crystallizer type:

Surface Cooling Crystallization
Surface cooling crystallization will be selected if the solubility of the substance to be crystallized is strongly dependent on temperature, and if vacuum cooling crystallization cannot be chosen, e.g. the vapour pressure required to achieve the endpoint temperature is too low for the plant utilities, or too expensive.

Vacuum Cooling Crystallization
Vacuum cooling crystallization is usually chosen if the solubility of the substance to be crystallized is strongly dependent on temperature, and if the vapour pressure of the solvent is high enough for this application to allow the use of conventional vacuum equipment. Vacuum cooling crystallization is the preferred cooling crystallization method for continuous operation conditions, due to the fact that the supersaturation is generated by adiabatic cooling of the solvent at the liquor level. This means that the energy is removed from the crystallizer at a location that is far less prone to encrustations, and with a method that requires far less mixing energy input to the crystallizer slurry.
This example in Fig. 9 shows the recrystallization of potassium chloride in industrial grade from fertilizer quality. The crude KCl is dissolved at elevated temperatures in a recycled stream of mother liquor. The resulting solution, now saturated with potassium chloride, is fed to a multistage, vacuum cooling crystallizer train. In order to fulfill the requirement of coarser crystals, the type selected is the DTB crystallizer. Fines dissolving is possible, by adding water to each crystallizer’s clear liquor overflow. The number of stages is optimized on the basis of maximum heat recovery (the recycled mother liquor is reheated in condensers using the vapours leaving the hotter crystallizers). Barometric (direct-contact) condensers are usually employed, so that the water content of the mother liquor is increased, and thus its dissolving capacity is improved. Steam is used (in separate heat exchangers) to heat the recycled, and diluted, mother liquor to the temperature required by the dissolver step, and the loop is closed by returning the mother liquor to the dissolver. The crystals are separated in pusher centrifuges, washed and dried. The typical crystal sizes averages are 0.8 to 1.0 mm.

Recovery of Pickling Bath Effluent Liquors

Vacuum cooling crystallization can also be used to purify solutions, by crystallization of the solute. The pickling of mild steel sheets with sulfuric acid produces an aqueous waste stream containing ferrous sulfate and sulfuric acid. Cooling of that solution forces ferrous sulfate to crystallize as FeSO₄·7H₂O. From the viewpoint of the mother liquor composition, this is a way to purify the solution. At the same time, the seven molecules of water that is removed with the crystallized ferrous sulfate causes the reconcentration of the sulfuric acid. The solution thus treated can be recycled to the pickling bath. The vacuum cooling is achieved in a single-effect draft-tube crystallizer which is operated together with a high-vacuum generator (a steam ejector or chilled water surface condenser). This modern process may be operated for a couple of months without interruptions for washouts.
Evaporative Crystallization

Evaporative crystallization is usually a process that is conducted under vacuum, just like the vacuum cooling crystallization. This process is chosen when solubility of the solute is nearly independent of temperature. As in vacuum cooling crystallization, special scaling problems are not a serious problem as long as boiling on the heater surface is avoided, and the special case of inverse solubility (solubility decreases with temperature) is recognized and taken into consideration.

Crystallization of Sodium Chloride

This example in Fig. 10 shows a crystallization plant for table salt, operated with concentrated brine from a solar pond. In addition to three FC crystallizers, there is an OSLO crystallizer, used by the plant to produce a fraction of its output as coarse crystals. The plant is operated as a quadruple-effect unit. The coarse crystals from the OSLO are separated on a pusher centrifuge, whereas the salt produced in the FC crystallizers is separated on screen bowl centrifuges, after being counter-currently washed with fresh feed liquor in a washing thickener. The product crystals are dried and packed. In order to maintain the level of impurities in the system to an acceptable level, some mother liquor is removed as hydrocyclone overflow, and purged. Some plants of this type have been supplied for the production of up to 2.5 t/h coarse (mean size greater than 2 mm) salt and additionally 10 t/h of normal salt.

Fig. 10 Salt recovery from solar brine with OSLO crystallization
Flue Gas Desulfurization (FGD): Scrubber Effluent

Concentration of scrubber effluents from FGD systems in thermal Power Plants has been practiced for about four decades. Plants for concentration of these wastewaters to dryness (ZLD) are in fact evaporative crystallization units, but should not be designed as simple evaporation units. Usually, FGD concentration units are combined with pre-treatment facilities, such as heavy metals precipitation, in order that it may be possible to recover a brine or a product salt pure enough for re-use.

A typical installation for the zero-liquid-discharge (ZLD) of the liquid effluent from a flue gas cleaning system in garbage fired power station consists of a heavy metals precipitation and a double-effect evaporative crystallization unit, with two FC crystallizers supplied to recover sodium chloride or calcium chloride dihydrate salt. In the case of Calcium chloride the first stage is a gypsum-seeded pre-concentrator, and the second stage is the calcium chloride crystallizer. The crystal product is separated on a screen bowl centrifuge, dried, packed and reused in another industrial application.

Recovery of Caffeine

When caffeine is extracted from coffee by the supercritical carbon dioxide method, a caffeine containing waste water is produced. Evaporation, combined with a surface cooling crystallization separates this waste water into a caffeine of food grade quality, and pure distillate which can be reused for the decaffeination process. Short residence times at the higher temperatures is important in the evaporative step of this process, in order to minimize caffeine decomposition. The process encompasses active carbon treatment used to remove impurities that influence the product colour, followed by a two-stage falling film evaporator driven by process vapours compressed to a higher pressure by a single mechanical compressor. In order to minimize residence time in the evaporators, the final concentrate is produced in a separate, smaller unit. This concentrate is finally cooled to ambient temperature in a surface cooled loop crystallizer, to crystallize caffeine monohydrate. The crystals are calcined to remove the water of hydration, and packed. This caffeine product is used in the manufacturing of soft drinks.
Salt from Secondary Aluminum Slag

When aluminum scrap is molten down, the liquefied aluminum must be protected from exposure to the atmosphere to avoid its oxidation. This protection is provided by a layer of molten sodium chloride / potassium chloride that float over the aluminum. This salt remains as slag after the recovery of the aluminum. This slag is very reactive. Humidity causes evolution of poisonous and explosive gases, the leachate is saturated with salts. Consequently, processes had to be developed to solve this environmental problem. The slag is fed to a cascade leaching process to achieve degassing under controlled process conditions and to dissolve the salts. The gases evolved are fed to an incinerator that allows the plant to recover the combustion energy. The remaining residue is separated from the salt solution by filtration and given to landfill. The solution is fed to a MVR driven evaporative FC crystallizer. The mixed salt product is separated, dried and reused in the same process).

Ammonium Sulfate from the Caprolactam Process

Ammonium sulfate is a by-product of the synthesis of caprolactam. Multiple-effect evaporative crystallization is the well-established process to recover crystalline ammonium sulfate and market it as fertilizer. In the last few years, the fertilizer marketplace has seen an increased demand for larger crystals, and for a narrower size distribution.

The example that follows shows a triple-effect evaporative crystallization plant using DTB crystallizers for the production ammonium sulfate of an average crystal size of ≥ 2 mm. The solution is fed counter-currently in order to improve crystal growth conditions by combining the highest process temperature and highest impurity concentration. The Messo DTB crystallizers use bottom-entry agitators, which provide superior mixing characteristics at a lower power requirement than common agitators. The product crystal size is enhanced by fines destruction systems. Each DTB crystallizer discharges slurry to a common slurry collection tank. The slurry is then fed to pusher centrifuges, where the crystals are washed and separated from the mother liquor. The centrifuged crystals are dried and screened, and the undersize fraction is recycled for recrystallization.
The GEA Messo PT chemical laboratory and pilot plant facility is available to develop the basic information necessary for the design of crystallization plants as well as the most appropriate overall processes for our clients. The chemical laboratory is able to define physical properties to the crystallizer designer, such as the metastable zone width (supersaturation), desupersaturation rates, viscosity, density of a range of compositions, the system solubility, formation of mixed crystals, as well as the chemical compositions of solutions and minerals.

Our research and development facility has equipment that accurately represents most types of crystallizers, and this is used as necessary to simulate the specific design envisioned for our clients. These process designs can be tested in small pilot plants brought together according to the specific process requirements, and samples can be produced for further (market) tests. In case of products that are too sensitive to be shipped to our facility, or that require special handling (due to safety or health concerns) our team may perform the necessary tests or investigations in our clients' facilities. We are proud to have developed and optimized production processes for the chemical, pharmaceutical and food industry jointly with our customers and tailor-made for the individual project. We continue to improve – for the benefit of our customers.
Among a lot of others from A to Z:

- Acetylsalicylic acid & salts
- Adipic acid
- Ammonium bromide
- Ammonium dimolybdate
- Ammonium hydrogenfluoride
- Ammonium sulfate (also by reaction)
- Ammonium thiosulfate
- Ascorbic acid & salts
- Benzoic acid & salts
- Bisphenol A
- Caffeine
- Calcium chloride
- Calcium formate
- Calcium tartrate
- Carnallite
- Citric acid & salts
- Cooling Tower Blowdown
- Copper chloride
- Copper sulfate
- Dextrose (Glucose)
- Dichlorobenzene
- Dicyandiamide
- Dipenterythritol
- Epichlorhydrine process effluent ZLD
- Ferrous sulfate from process effluents
- Ferrous sulfate from TiO2
- Fumaric acid & salts
- Glutamic acid & salts
- Guanidine nitrate
- Hexachlorocyclohexane
- Isomaltulose
- Ketogulonic acid & salts

- Lactic salts
- Lactose
- Landfill Leachate
- Concentration & ZLD
- Lauryllactam
- Magnesium ammonium sulfate
- Magnesium chloride
- Magnesium hexafluorosilicate
- Magnesium sulfate
- Malic acid & salts
- Methionine
- Nickel acetate
- Nickel nitrate
- Pentaerythritol
- Potash from various sources
- Potassium bromide
- Potassium carbonate
- Potassium chloride
- Potassium dichromate
- Potassium hydrogen carbonate
- Potassium nitrate
- Potassium permanganate
- Potassium phosphate (Industrial)
- Potassium sulfate
- Potassium sulfate from Na2SO4 & KCl (conversion)
- Sodium dichromate
- Sodium disulfite
- Sodium dithionite
- Sodium fluoride salts
- Sodium formate
- Sodium glutamate
- Sodium ketogulonate
- Sodium nitrite (waste)
- Sodium perborate
- Sodium perchlorate
- Sodium phosphates (industrial)
- Sodium salicylate
- Sodium sulfate
- Sodium tartrate
- Sodium thiocyanate
- Sorbic acid & salts
- Sulfanilic acid & salts
- Tartaric acid & salts
- TMP
- Trimellitic acid
- Urea
- Vinasse evaporation
- Yeast effluent processing
- Zinc sulfate 6-hydrate
- Zinc sulfate 7-hydrate
GEA Group is a global mechanical engineering company with multi-billion euro sales and operations in more than 50 countries. Founded in 1881, the company is one of the largest providers of innovative equipment and process technology. GEA Group is listed in the STOXX Europe 600 Index.