
PRODUKTINFORMATION

Originaldokument

GEA Grasso FX GC

Flüssigkeitskühlsatz

COPYRIGHT

Alle Rechte vorbehalten.

Nichts aus dieser Dokumentation darf ohne die vorherige schriftliche Genehmigung der

GEA Refrigeration Germany GmbH

nachfolgend **Hersteller** genannt, in irgendeiner Form (Druck, Fotokopie, Mikrofilm oder ein anderes Verfahren) vervielfältigt oder verbreitet werden. Diese Einschränkung gilt auch für die in der Dokumentation enthaltenen Zeichnungen und Diagramme.

GESETZLICHER HINWEIS

Diese Produktinformation dient der Produktpräsentationen und Kundenberatung. Sie enthält wichtige Informationen und technische Daten rund um das Produkt.

Die Produktinformation stellt dem Kunden vor dem Verkauf des Produktes die technischen, produktbezogenen und kommerziellen Detailinformation zur Verfügung.

Diese Produktinformation dient der Unterstützung und der technischen Beratung der Partner und Kunden sowie des Vertriebsteams. Die Produktinformation bildet neben dem Transfer des Produkt Know-hows die Grundlage für Produktvorführungen, die Organisation und Durchführung technischer Seminare sowie die technische Unterstützung bei Messen.

Diese Produktinformation ist um Informationen über Vorschriften zur Arbeitssicherheit, zum Gesundheitsschutz und zum Umweltschutz am Ort der Aufstellung des Produktes zu ergänzen. Die Vorschriften variieren durch die geltenden gesetzlichen Bestimmungen am Ort der Aufstellung des Produktes und werden in dieser Produktinformation daher nicht berücksichtigt.

Neben dieser Produktinformation und den im Verwenderland am Einsatzort geltenden verbindlichen Regelungen zur Unfallverhütung sind auch die anerkannten fachtechnischen Regeln für sicherheits- und fachgerechtes Arbeiten zu berücksichtigen.

Technische Änderungen durch Weiterentwicklung des in dieser Produktinformation behandelten Produktes behält sich die GEA Refrigeration Germany GmbH vor.

Abbildungen und Zeichnungen in dieser Produktinformation sind vereinfachte Darstellungen. Aufgrund von Verbesserungen und Änderungen ist es möglich, dass die Abbildungen nicht exakt mit dem derzeitigen Entwicklungsstand übereinstimmen. Die technischen Angaben und Abmessungen sind unverbindlich. Ansprüche daraus können nicht abgeleitet werden.

VERWENDETE SYMBOLE

Gefahr!

Steht für eine unmittelbare Gefahr, die zu schweren Körperverletzungen oder zum Tod führt.

▶ Beschreibung zur Abwendung der Gefahr.

Marnung!

Steht für eine möglicherweise gefährliche Situation, die zu schweren Körperverletzungen oder zum Tod führt.

▶ Beschreibung zur Abwendung der gefährlichen Situation.

✓ Vorsicht!

Steht für eine möglicherweise gefährliche Situation, die zu leichten Körperverletzungen oder zu Sachschäden führen könnte.

▶ Beschreibung zur Abwendung der gefährlichen Situation.

Achtung

Steht für einen wichtigen Hinweis, dessen Beachtung für die bestimmungsgemäße Verwendung und Funktion des Produktes wichtig ist.

▶ Beschreibung der erforderlichen Aktion zur bestimmungsgemäßen Funktion des Produktes.

VORWORT

Das Portfolio der GEA Refrigeration Germany GmbH beinhaltet neben weiteren Produkten auch komplette Flüssigkeitskühlsätze und Wärmepumpen.

Vor dem Hintergrund des gleichen Wirkprinzips wird in der Dokumentation der GEA die Begriffe Flüssigkeitskühlsatz und Wärmepumpen wie folgt unterschieden:

Als Flüssigkeitskühlsatz wird ein System bezeichnet, bei dem der anwendungstechnische Fokus auf der Kälteerzeugung (Kühlung eines flüssigen Sekundärkreislaufs) liegt – unabhängig von möglichen Wärmerückgewinnungsoptionen über einen flüssigkeitsgekühlten Verflüssiger und/ oder Ölkühler. GEA Flüssigkeitskühlsätze beinhalten die Standard GEA Blu Baureihen BluAstrum, BluGenium, BluAir (duo), BluX (duo) sowie die modulare GEA Grasso FX Serie bzw. MX als Sonderbaureihe.

Als Wärmepumpe wird ein System bezeichnet, bei dem der anwendungstechnische Fokus auf der Wärmeerzeugung (Aufheizung eines flüssigen Heizträgers) liegt. Dabei ist das hochdruckseitige Wärmetauscherkonzept im Hinblick auf diese Anwendung optimiert. GEA Wärmepumpen beinhalten die Standard GEA Red Baureihen RedAstrum, RedGenium sowie die Sonderbaureihe GEA Grasso HX.

Das Produkt GEA Blu-Red Fusion kann sowohl als zweistufige Wärmepumpe oder auch als kombinierte Flüssigkeitskühlsatz-Wärmepumpe betrachtet werden. Formel ist es Teil der GEA Red Standard-Baureihe, da das Produkt immer (auch) auf eine konkrete Wärmeanwendung ausgelegt ist.

Viele Komponenten und Module werden gleichartig in unterschiedlichen Produktbaureihen der GEA Flüssigkeitskühlsätze und Wärmepumpen verwendet. Die Beschreibungen mancher Komponenten und Wirkprinzipien in diesem Dokument sind deswegen allgemein gehalten.

Die Abbildung auf dem Deckblatt zeigt das Produkt in einer Projektspezifischen Ausstattung (Projektbedingte Änderungen möglich).

DARSTELLUNGSHINWEISE

Gliederungs- und Aufzählungszeichen

Gliederungszeichen dienen der Trennung von logischen Inhalten innerhalb eines Abschnitts:

- Gliederungspunkt 1
 - Ausführungen zu Gliederungspunkt 1.
- · Gliederungspunkt 2
 - Ausführungen zu Gliederungspunkt 2.

Aufzählungszeichen dienen der Trennung von Aufzählungen innerhalb eines beschreibenden Textes:

Beschreibender Text mit nachfolgender Aufzählung:

- Aufzählungspunkt 1
- Aufzählungspunkt 2

Handlungsanweisungen

Handlungsanweisungen fordern Sie auf, etwas zu tun. Mehrere Arbeitsschritte nacheinander ergeben eine Handlungsfolge, die in der vorgegebenen Reihenfolge abgearbeitet werden soll. Die Handlungsfolge kann in einzelne Arbeitsschritte unterteilt sein.

Handlungsfolge

- Handlungsfolge Schritt 1
 - Arbeitsschritt 1.
 - Arbeitsschritt 2.
 - Arbeitsschritt 3.
- 2. Handlungsfolge Schritt 2

Der Handlungsfolge nachgestellt ist das zu erwartende Ergebnis:

→ Ergebnis der Handlungsfolge.

Einzelhandlung

Einzelhandlungen sind so gekennzeichnet:

Einzelner Arbeitsschritt

INHALTSVERZEICHNIS

1	Beschreibung	11
1.1	Allgemeine Angaben	11
1.2	Lieferumfang	
1.3	Produktbezeichnung Flüssigkeitskühlsätze und Wärmepumpen mit Hubkolbenverdichtern	13
2	Komponenten	17
2.1	Flüssigkeitskühlsätze in Remote-Ausführung	17
3	Funktions- und Konstruktionsbeschreibung	
3.1	Konstruktion, Anwendungsgebiete	
3.2	Allgemeiner Funktionsablauf von Flüssigkeitskühlsätzen und Wärmepumpen	19
3.3	Hauptbauteile	
3.3.1	Hubkolbenverdichter	22
3.3.2	Verdichterantriebsmotor	22
3.3.3	Kupplung	23
3.3.4	Verdampfer + Flüssigkeitsabscheider	24
3.3.5	Verflüssiger	26
3.3.6	Schaltschrank mit Steuerung	27
3.3.7	Armaturen	
3.3.8	Sicherheitseinrichtungen	
3.3.9	Sicherheitseinrichtungen zur Druckbegrenzung	29
3.3.10	Kundenseitig montierte Komponenten	
4	GEA Omni Steuerung	31
4.1	Produkt-Highlights	31
4.2	Ansicht	32
4.3	Standardfunktion	32
4.4	Bestandteile der GEA Omni	33
4.5	Ein- und Ausgangssignale	35
5	Technische Daten	38
5.1	Abmessungen, Massen, Füllmengen und Anschlüsse	38
5.1.1	GEA Grasso FX GC PP 260 bis GEA Grasso FX GC PP 1250	39
5.1.2	GEA Grasso FX GC PP 520 duo bis GEA Grasso FX GC PP 1800 duo	41
5.2	Einsatzgrenzen	43
5.3	Anforderungen an die Wasserqualität, Grenzwerte	45
5.4	Leistungsparameter	47
5.5	Angaben zur Geräuschemission	48
6	Anfrageformular	49
6.1	Herstelleranschrift	40

ABBILDUNGSVERZEICHNIS

Abb. 1	Flüssigkeitskühlsatz GEA Grasso FX GC PP duo und GEA	4.4
	Grasso FX GC PP	_11
Abb. 2	Flüssigkeitskühlsatz GEA Grasso FX GC PP	_21
Abb. 3	Flüssigkeitskühlsatz GEA Grasso FX GC PP duo	_21
Abb. 4	GEA Grasso FX GC PP - Verdampfer	_24
Abb. 5	GEA Grasso FX GC PP duo - Verdampfer	_24
Abb. 6	GEA Grasso FX GC PP - Flüssigkeitsabscheider	_24
Abb. 7	GEA Grasso FX GC PP duo - Flüssigkeitsabscheider	_24
Abb. 8	Wärmerückgewinnung	_27
Abb. 9	GEA Omni Außenansicht ohne Meldeleuchten	_32
Abb. 10	GEA Omni Außenansicht mit Meldeleuchten	32
Abb. 11	GEA Omni Schaltschrank Innenansicht (Frequenzumformer	
	im Schaltschrank eingebaut)	34
Abb. 12	Satzzeichnung GEA Grasso FX GC PP	39
Abb. 13	Satzzeichnung GEA Grasso FX GC PP duo	_41 _41
Ahh 14	Korrosionsheständigkeit hei Anwesenheit von Chloriden	46

1 Beschreibung

1.1 Allgemeine Angaben

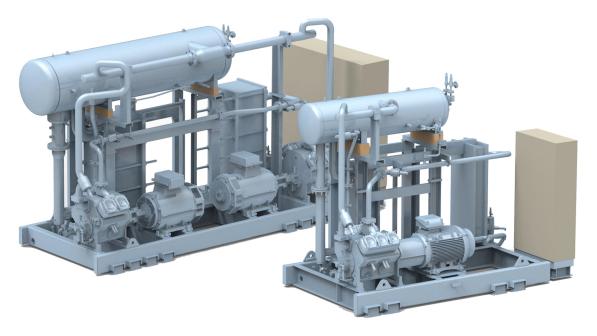


Abb.1: Flüssigkeitskühlsatz GEA Grasso FX GC PP duo und GEA Grasso FX GC PP

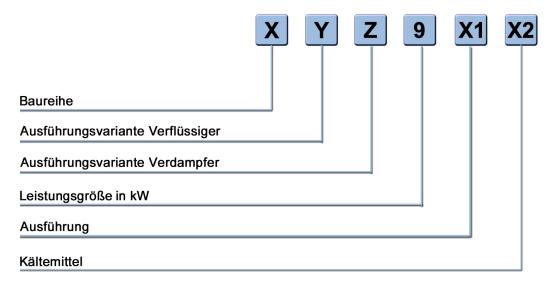
Parameter	Erläuterung		
Leistungsbereich	bis 3000 kW 12/ 6 °C (Kälteträgertemperatur)		
Hubkolbenverdichter	Baugröße GEA Grasso V300 - V1800 V _{th} = 260 1500 m³/h		
Flüssigkeitskühlsatz	GEA Grasso FX GC PP / GEA Grasso FX GC PP duo		
Ausführung Verdampfer	Plattenwärmeübertrager		
Arbeitsprinzip	überflutete Verdampfung		
Flüssigkeitsabscheider am Verdampfer angeordnet			
Ausführung Verflüssiger	Plattenwärmeübertrager		
Transport	1 Teil oder in einzelnen Teilen bzw. Baugruppen		

1.2 Lieferumfang

Achtung

Der **Flüssigkeitskühlsatz** wird gemäß Technischer Spezifikation gefertigt und ausgeliefert.

► Auf der Basis der Standardausrüstung können optionale Ausrüstungsvarianten berücksichtigt werden.


Standardausrüstung für GEA Grasso FX GC und GEA Grasso FX GC duo					
Bezeichnung	Ausführung				
Maximal zulässiger Druck:	max. 25 bar				
Einsatzumgebung:	Innenaufstellung				
Umgebungstemperaturen:	+5 °C bis +40 °C				
Aufstellungshöhe:	≤ 1000 m ü. N.N.				
Kälteträgertemperatur:1	-15 °C/ 6 °C/ 18 °C				
Elektromotor:	Standardlieferumfang IP 23				
Kältemittel:	R717				
	Gemäß Auftragsspezifikation. Vergleiche auch technische Information zu den Schmier- ölen für GEA Aggregate, Flüssigkeitskühlsätze und Wärmepumpen.				
Ölsorte:	<u> Vorsicht!</u>				
	Abweichende Ölsorten müssen mit dem Hersteller abgestimmt werden. ► Kontaktieren Sie die Konstruktion oder den technischen Kundendienst der GEA Refrigeration Germany GmbH.				
Ölkühlung:	luftgekühlt (komplett verrohrt)				
Ölheizung: (im Verdichterkurbelgehäuse)	Standardlieferumfang				
Ölfilter:	Einfachfilter				
Ersatzölfilter:	Öldruckfilterpatrone lose mitgeliefert (inklusive)				
Ölniveauschalter:	GEA Grasso FX GC: ohne / GEA Grasso FX GC duo: mit				
Drucksensoren:	auf Sensorblock Verdichter				
separate Druckschalter:	ohne				
Überströmventil HD:	Standardlieferumfang				
Sicherheitsventil ND:	Wechsel-Sicherheitsventilkombination				
Strömungswächter:	elektronisch				
Steuerung:	GEA Omni				
Kommunikation	Modbus TCP				
Kraftstromfeld und Frequenzumformer:	Standardlieferumfang, Kabeleinführung unten				
Farbe:	RAL 5014 (taubenblau), Schaltschrank RAL 7035				
Schwingungsisolatoren:	ohne (Standard)				
Abnahme Druckgeräte:	CE-PED, Modul H (Rohrleitungen)				
Dokumentation:	2x Papier + 1 Stück USB Stick				

Optionale Ausrüstung				
Bezeichnung	Ausführung			
Ersatzölfilter: lieferbar				
Kommunikation:	Profibus DP ProfiNet			
Elektromotor:	IP 55			
Strömungswächter:	mechanisch (Paddel)			
Schwingungsisolatoren:	lieferbar			
Abnahme Druckgeräte: CE-PED, Modul H1 (kompletter Flüssigkeitskühlsatz)				

Temperaturdifferenz Kälteträger maximal 10 K/ Standard 5 K

1.3 Produktbezeichnung Flüssigkeitskühlsätze und Wärmepumpen mit Hubkolbenverdichtern

Baureihen GEA Grasso FX GC, MX GC und HX GC

Produktcode Beschreibung

Kennung	Beschreibung			
х	Baureihe Flüssigkeitskühlsatz / Wärmepumpe			
Y	Ausführungsvariante Verflüssiger			
z	Z Ausführungsvariante Verdampfer			
9 Leistungsgröße Flüssigkeitskühlsatz / Wärmepumpe bezogen auf den Kaltwasserbetrieb 12 °C / 6 °C				
X1	Ausführung Flüssigkeitskühlsatz / Wärmepumpe			
X2	Kältemittel			

X Baureihe

Kennung	Beschreibung			
FX GC Flüssigkeitskühlsatz mit überfluteter Verdampfung				
MX GC	Sonderausführung Flüssigkeitskühlsatz mit überfluteter Verdampfung			
HX GC Sonderausführung Wärmepumpe ² mit überfluteter Verdampfung				

Y Ausführungsvariante Verflüssiger

Kennung	Beschreibung			
Р	Plattenwärmeübertrager (kasettengeschweißt)			
s	Shell and Plate Verflüssiger (voll verschweißt)			
R	R Rohrbündelverflüssiger			
L	L Luftgekühlter Verflüssiger ³			
V Verdunstungsverflüssiger ³				
0	ohne Verflüssiger ("Remote")			
х	sonstige Ausführung			

² Hubkolbenverdichter 5 HP, V HP, V XHP.

³ Nicht im Lieferumfang der GEA Refrigeration Germany enthalten.

Z Ausführungsvariante Verdampfer

Kennung	Beschreibung			
Р	Plattenwärmeübertrager (kasettengeschweißt)			
s	S Plattenwärmeübertrager (voll verschweißt)			
0	O ohne Verdampfer (Verflüssigersatz)			
X sonstige Ausführung				

9 Leistungsgröße 4

Ausführung mit 1 Verdichter

Verdichterbaugröße ⁵	Leistungsgröße in kW
35 HP	35
45 HP	45
55 HP	55
65 HP	65
V300	260
V300 T	60
V300 HP	300
V350 XHP	350
V450	400
V450 T	90
V450 HP	450
V550 XHP	550
V600	525
V600 T	120
V600 HP	600
V700	600
V700 T	140
V750 XHP	750
V950 XHP	950
V1100	900
V1100 T	200
V1400	1250
V1400 T	280
V1800	1500
V1800 T	340

Ausführung mit 2 Verdichtern (parallelstufig)

⁴ Kälteleistung (Werte gerundet) V300 und V600 bezogen auf den Kaltwasserbetrieb +12 / +6 °C bei 1500 min⁻¹. Kälteleistung (Werte gerundet) V700 – V1800 bezogen auf den Kaltwasserbetrieb +12 / +6 °C bei 1200 min⁻¹. Kälteleistung (Werte gerundet) V300 T – V600 T bezogen auf den Kaltwasserbetrieb -20 / -55 °C bei 1500 min⁻¹. Kälteleistung (Werte gerundet) V700 T – V1800 T bezogen auf den Kaltwasserbetrieb -20 / -25 °C bei 1200 min⁻¹. HX Wärmepumpen mit Hochdruckkolben 5 HP, V HP und V XHP Serie werden anhand der Verdichterbaugröße geführt.

Verdichterbaugröße 5	Leistungsgröße in kW / Baugröße	Verdichterbaugröße ⁵	Leistungsgröße in kW / Baugröße
2x V300	520	2x 35 HP	2x35
V300 / V450	650	2x 45 HP	2x45
2x V450	800	2x 55 HP	2x55
V450 / V600	900	2x 65 HP	2x65
2x V600	1050	2x V300 HP	2x300
2x V700	1200	2x V350 XHP	2x350
V700 / V1100	1500	2x V450 HP	2x450
2x V1100	1800	2x V550 XHP	2x550
V1100 / V1400	2200	2x V600 HP	2x600
2x V1400	2500	2x V750 XHP	2x750
V1400 / V1800	2750	2x V950 XHP	2x950
2x V1800	3000		

Ausführung mit 2 Verdichtern (zweistufig) ⁶

ND-Verdichter Baugröße ⁵	Leistungsgröße in kW / Baugröße	HD-Verdichter Baugröße ⁵	Leistungsgröße in kW / Baugröße
V300	260	35 HP	35
V450	400	45 HP	45
V600	525	55 HP	55
V700	600	65 HP	65
V1100	900	V300 HP	300
V1400	1250	V350 XHP	350
V1800	1500	V450 HP	450
V300 T	60	V550 XHP	550
V450 T	90	V600 HP	600
V600 T	120	V750 XHP	750
V700 T	140	V950 XHP	950
V1100 T	200		
V1400 T	280		
V1800 T	340		

⁵ Die V HS Serie wird aufgrund nicht existenter konstruktiver Unterschiede zu der V Serie nicht gesondert aufgeführt.

Die Leistungsgröße wird gebildet durch ND-Verdichter Leistungsgröße (HD-Verdichter Leistungsgröße). Beispiel: ND-Verdichter Baugröße V1400 und HD-Verdichter Baugröße V600 HP bedeutet Leistungsgröße 1250(1100). HX Wärmepumpen mit Hochdruckkolben 5 HP, V HP und V XHP Serie werden anhand der Verdichterbaugröße geführt.

X1 Ausführung

Kennung	Beschreibung
(ohne)	Ausführung mit 1 Hubkolbenverdichter (kompletter Satz einstufig)
duo	Ausführung mit 2 Hubkolbenverdichter (parallelstufig)
Т	Ausführung mit 2 Hubkolbenverdichtern (zweistufig)

X2 Kältemittel

Kennung	Beschreibung
NH ₃	Ammoniak

Bezeichnungsbeispiele

Beispiel	Beschreibung				
FX GC PP 900 duo NH ₃	Flüssigkeitskühlsatz mit Hubkolbenverdichter (FX GC), mit Plattenwärmeübertrager als Verflüssiger (P), mit Plattenwärmeübertrager als Verdampfer (P), Leistungsgröße 900 kW (900), 2 Verdichter parallelstufig (duo), für Kältemittel Ammoniak (NH ₃)				
HX GC SS 900(550) T NH ₃	Wärmepumpe mit Hubkolbenverdichter (HX GC), Shell and Plate Verflüssiger (S), Plattenwärmeübertrager (voll verschweißt) als Verdampfer (S), Leistungsgröße ND-Verdichter V1100 mit HD-Verdichter V550 XHP (900(550)), 2 Verdichter zweistufig (T), für Kältemittel Ammoniak (NH ₃)				

2 Komponenten

Die Beschreibung der Hauptbauteile und dem Zubehör bezieht sich auf die Standardausführung des Flüssigkeitskühlsatzes. Für den tatsächlichen Lieferumfang gilt die "Auftragsabhängige technische Dokumentation".

GEA Grasso FX GC PP sind im Herstellerwerk montierte und geprüfte Flüssigkeitskühlsätze für Innenaufstellung in Maschinenräumen oder Gehäusen für Außenaufstellung.

Alle Bauteile sind vollständig montiert. Die Niederspannungsanlage mit Frequenzumformer und Steuerung sind verkabelt.

Die Flüssigkeitskühlsätze können mit unterschiedlichen Verflüssigerbauarten ausgeführt bzw. komplettiert werden:

Bezeichnung	Ausführung				
GEA Grasso FX GC PP	Flüssigkeitskühlsatz mit wassergekühltem Verflüssiger und geschlossenem Kältemittelkreislauf				
GEA Grasso FX GC LP	Verdampfersatz für den Anschluss an je einen luftgekühlten Verflüssiger (nicht Lieferumfang)				
GEA Grasso FX GC VP	Verdampfersatz für den Anschluss an je einen Verdunstungsverflüssiger (nicht Lieferumfang)				

Abnahme

Die Flüssigkeitskühlsätze werden nach den geltenden europäischen Vorschriften (EN, UVV, VDE) oder nach Vorschriften des Bestimmungslandes gefertigt.

Die Flüssigkeitskühlsätze erhalten nach Abnahme gemäß der Druckgeräterichtlinie 2014/68/EU ein CE-Kennzeichen.

Dokumentation

Mit jedem Flüssigkeitskühlsatz wird eine Anwenderdokumentation geliefert. Die Anwenderdokumentation beinhaltet:

- Zeichnungen und Stücklisten,
- Sicherheitshinweise,
- Betriebsanleitung

(u.a. mit der Beschreibung des Kältemittel- und Ölkreislaufes, der Anleitung für Montage, Inbetriebnahme und Wartung),

- Dokumentationen der Hauptkomponenten (z.B. Elektromotor, Steuerung),
- Wartungsanleitung,
- Abnahmezertifikate für abnahmepflichtige Komponenten.

2.1 Flüssigkeitskühlsätze in Remote-Ausführung

Neben den komplett ab Werk mit einem Verflüssiger ausgestatteten Flüssigkeitskühlsätzen werden oft auch so genannte Remote-Flüssigkeitskühlsätze betrieben

Dies bedeutet, das der ab Werk gelieferte Flüssigkeitskühlsatz keinen Verflüssiger enthält, sondern lediglich für die angefragte Kondensationstemperatur ausgelegt wurde.

Der Kunde wählt dann selbst einen geeigneten Verflüssiger aus und verbindet diesen mit dem gelieferten Remote-Flüssigkeitskühlsatz. Der externe (remote) Verflüssiger ist entweder ein luftgekühlter Verflüssiger oder ein Verdunstungsverfüssiger.

3 Funktions- und Konstruktionsbeschreibung

3.1 Konstruktion, Anwendungsgebiete

Die Hauptaufgabe der Flüssigkeitskühlsätze besteht darin, flüssige Kälteträger abzukühlen. Diese können zu Kühlzwecken für die verschiedensten Anwendungsfälle eingesetzt werden, z.B.:

- Verfahrenstechnik
- Klimatechnik
- Kühl- und Lagerwirtschaft
- Abwärmenutzung (z.B. Wärmepumpenbetrieb)
- Nahrungs- und Genussmittelindustrie
- Labortechnik

Als Kälteträger können Wasser und Solen eingesetzt werden.

Achtung

Nur für den jeweiligen Einsatzzweck geeignete Materialien im Kälteträgerkreislauf verwenden (z.B. Korrosion).

▶ Empfehlung: Beratung durch GEA Refrigeration Germany GmbH

Die Flüssigkeitskühlsätze werden in der Standardausführung mit einer freiprogrammierbaren Steuerung ausgerüstet.

An einem Display können alle Betriebs- und Störmeldungen sowie Prozessvariablen abgelesen werden.

Die Bedienung der Steuerung erfolgt über ein Touch Panel.

Merkmal der konstruktiven Gestaltung ist die Ausführung mit stabilem Traggerüst sowie gut zugänglichen Baugruppen.

Für ausführliche Informationen zu den Hubkolbenverdichtern steht eine separate Installations- und Wartungsanleitung zur Verfügung.

3.2 Allgemeiner Funktionsablauf von Flüssigkeitskühlsätzen und Wärmepumpen

Flüssigkeitskühlätze und Wärmepumpen sind automatisch arbeitende Anlagen in einem Kreisprozess, in dem ein Kältemittel auf niedrigem Temperaturniveau Wärme aufnimmt (Quelle) und diese auf einem hohen Temperaturniveau abgibt (Senke).

Der Hubkolbenverdichter saugt das Kältemittel aus dem Flüssigkeitsabscheider ab und verdichtet es auf Verflüssigungsdruck.

Unter Wärmeentzug verflüssigt sich das Kältemittel und gibt die Wärme an ein Kühlmedium oder Wärmeträger ab. Vor bzw. nach Verflüssigung kann dem Kältemittel in einem externen Enthitzer bzw. Unterkühler seine Überhitzungs- bzw. Unterkühlungswärme entzogen werden. Anschließend wird das flüssige Kältemittel in den Flüssigkeitsabscheider entspannt.

Im Flüssigkeitsabscheider erfolgt die Trennung von Kältemitteldampf und Flüssigkeit.

Die Flüssigkeit wird im Schwerkraftumlauf (Thermosiphonprinzip) durch den Verdampfer geführt. Durch Wärmeaufnahme des flüssigen Kältemittels (überflutete Verdampfung) verdampft das Kältemittel und das Kälteträgermedium wird abgekühlt. Bei einer Kaskaden-Variante kann ein Verdampfer zum Einsatz kommen, der an Stelle eines Kälteträgermediums auch mit verdichtetem Kältemittel aus der Niederdruckstufe beaufschlagt wird. Das Kältemittel aus dem Prozess der Niederdruckstufe wird dabei verflüssigt.

Während des Betriebes des Hubkolbenverdichters dient Öl im Kurbelgehäuse der Schmierung bewegter Teile. Da im Gegensatz zu Schraubenverdichter basierten Anwendungen hierbei das Öl nicht in den Arbeitsraum gespritzt wird und sich nicht mit dem Kältemittel vermischt, ist eine Ölabscheidung nicht erforderlich.

Trotzdem gelangen kleinste Ölpartikel in den Kältemittelkreislauf und auf dessen Niederdruckseite.

Ein spezielles, von der GEA Refrigeration Germany GmbH entwickeltes automatisches und wartungsfreies Ölrückführsystem führt das Öl aus dem Verdampfer/Flüssigkeitsabscheider wieder in den Hubkolbenverdichter zurück.

Das ist eine grundlegende Voraussetzung für den störungsfreien Betrieb des Verdampfersystems.

Die Leistungsregelung des Hubkolbenverdichters erfolgt stufenweise durch die stufenweise Verdichter- bzw. Zylinderabschaltung mittels satzinterner Regelgeräte sowie optional durch die FU-Regelung des Verdichterantriebsmotors (Standard für die Baureihen GEA BluGenium und GEA RedGenium).

Somit kann die Kälteleistung optimal an die effektiv benötigte Kälteleistung angepasst werden.

Im Teillastbetrieb dürfen die Kaltwasser- / Sole- und Wärmeträgervolumenströme um max. 50 % verringert werden, um einen effizienten Wärmeübergang in den Wärmeübertragersystemen zu gewährleisten.

3.3 Hauptbauteile

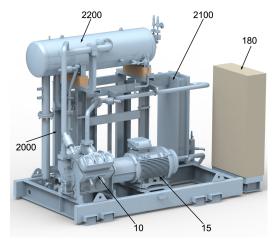


Abb.2: Flüssigkeitskühlsatz GEA Grasso FX GC PP

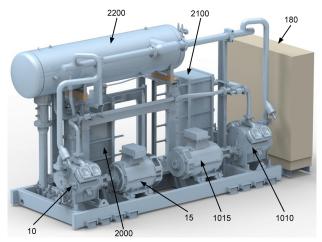


Abb.3: Flüssigkeitskühlsatz GEA Grasso FX GC PP duo

Die Flüssigkeitskühlsätze der Baureihe GEA Grasso FX GC PP bestehen aus folgenden Hauptbaugruppen und Bauteilen (Standardlieferumfang, projektbedingte Abweichungen und optionale Ausstattungen sind möglich):					
Position	Hauptbaugruppe, Bauteil	Informationen			
10	Hubkolbenverdichter 1	siehe Installation - und Wartungsanleitung Hubkolbenverdichter			
15	Verdichterantriebsmotor 1	siehe Betriebsanleitung Verdichterantriebsmotor			
1010	Hubkolbenverdichter 2	siehe Installation - und Wartungsanleitung Hubkolbenverdichter			
1015	Verdichterantriebsmotor 2	siehe Betriebsanleitung Verdichterantriebsmotor			
180	Schaltschrank, Steuerung und Regeleinrichtung	siehe Dokumentation Steuerung			
2000	Verdampfer	siehe Betriebsanleitung Verdampfer			
2100	wassergekühlter Verflüssiger	siehe Betriebsanleitung Verflüssiger			
2200	Flüssigkeitsabscheider	siehe Bauteildokumentation			

Achtung

Die Dokumentationen der Hauptbauteile sind Bestandteil der Produktdokumentation.

► Siehe Produktbeschreibung bzw. Betriebsanleitungen der Zulieferer, z.B. für den Verdichterantriebsmotor, Verflüssiger und Verdampfer.

3.3.1 Hubkolbenverdichter

Im Produkt werden offene, einfachwirkende, mehrzylindrige Hubkolbenverdichter für das Kältemittel Ammoniak (R717) eingesetzt.

Die Hubkolbenverdichter zeichnen sich durch eine kompakte Bauweise, einer hohen Zuverlässigkeit, hochwertiger Komponenten und Servicefreundlichkeit aus.

Die Verdichter werden mit dem Kältemittel Ammoniak (NH₃) betrieben.

Mit dem Verdichter erfolgt die Absaugung des im Verdampfer erzeugten Ammoniakdampfes und dessen Verdichtung auf Verflüssigungsdruck.

Die Überwachung der Betriebswerte des Verdichters erfolgt durch die am Verdichter angebrachten Druck- und Temperaturmesswertgeber. Bei dem Verdichter können die einzelnen Zylinder durch Saugventilentlastungsvorrichtungen abgeschaltet werden.

Die Verdichter weisen folgende Ausrüstungsmerkmale auf:

- Anlaufentlastung
- Leistungsregelung durch Zylinderabschaltung und stufenlose Drehzahlverstellung (optionale Ausstattung bei Flüssigkeitskühlsätzen der Serie FX GC und FX GC duo)
- Überwachung Öldifferenzdruck
- Ölheizung
- Überwachung Enddruck
- Überwachung Saugdruck
- Überwachung Kurbelgehäusedruck
- Überwachung Endtemperatur
- Überwachung Öltemperatur
- Überwachung Saugtemperatur

Die sicherheitstechnische Ausrüstung der Druckerzeuger erfolgt serienmäßig nach EN 378 durch Umströmventile in Verbindung mit Sicherheitsdruckbegrenzern DBK.

Die Dokumentation Hubkolbenverdichter (Installation - und Wartungsanleitung, Stücklisten, Zeichnungen) ist Bestandteil der Produktdokumentation.

3.3.2 Verdichterantriebsmotor

Standard: Der Verdichter wird von einem luftgekühlten 4-poligen Elektromotor IP23 mit einer Betriebsspannung von 400 V; 50 Hz mittels einer Kupplung angetrieben.

Der Motor ist über einen Frequenzumformer drehzahlgeregelt (optionale Ausstattung bei Flüssigkeitskühlsätzen der Serie FX GC und FX GC duo). Der Drehzahlbereich liegt bei 500 U/min ... 1500 U/min.

Option: Andere Hersteller, Betriebsspannungen, Frequenzen, Schutz- und Effizienzklassen, zusätzliche Überwachungssensorik und Stillstandsheizung, Erzeugnis ohne Motor bestellbar (Beistellung durch den Kunden). Sonstiges auf Anfrage.

Die Dokumentation Elektromotor (Betriebsanleitung) ist Bestandteil der Produktdokumentation.

3.3.3 Kupplung

Die Kupplung dient der Übertragung von Drehmomenten zwischen Verdichter und Verdichterantriebsmotor. Die Ausführung der Kupplung bewirkt die Entkopplung von sonst störenden Einflüssen wie axialen oder radialen Kräften, Schwingungen oder Achsversatz.

Drehzahlschwankungen und Drehzahlstöße werden gedämpft und abgefedert, Drehschwingungen werden reduziert.

Die Dokumentation Kupplung (Betriebsanleitung) ist Bestandteil der Produktdokumentation.

3.3.4 Verdampfer + Flüssigkeitsabscheider

Anordnung der Verdampfer

Abb.4: GEA Grasso FX GC PP - Verdampfer

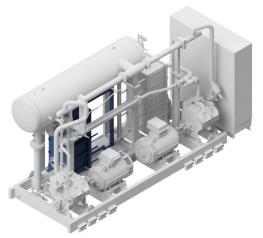


Abb.5: GEA Grasso FX GC PP duo - Verdampfer

Im Verdampfer erfolgt durch Verdampfung des Kältemittels die Aufnahme von Wärme aus dem Kälteträger und damit dessen Abkühlung. Der Verdampfer arbeitet nach dem Prinzip der überfluteten Verdampfung mit äußerer Zirkulation.

Die kassettengeschweißten Wärmeübertragerplatten aus Edelstahl AISI 304 / 316L (andere Werkstoffe auf Anfrage) werden mittels Spannbolzen zwischen Stativ- und Druckplatte zusammengespannt und an der oberen Tragstange und unteren Führungsschiene fixiert. Die einzelnen Plattenmodule werden kältemittelseitig mit Ringdichtungen und kälteträgerseitig bzw. kühlmediumseitig mit Elastomer-Felddichtungen, welche klebstofffrei sind, abgedichtet.

Anordnung der Flüssigkeitsabscheider

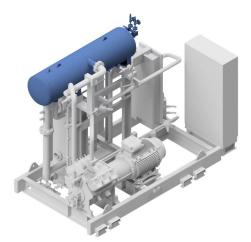


Abb.6: GEA Grasso FX GC PP - Flüssigkeitsabscheider

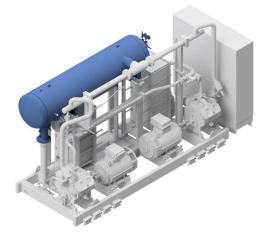


Abb.7: GEA Grasso FX GC PP duo - Flüssigkeitsabscheider

Im Flüssigkeitsabscheider, welcher am Verdampfer angeordnet ist, werden Flüssigkeitstropfen effektiv abgeschieden.

Der Verdampfer wird im Betriebszustand bis zur Höhe des oberen Schauglases in der Zirkulationsleitung (Pos. 2555.2) mit Ammoniak überflutet.

Hauptbauteile

Das unlösliche, schwerere Öl lagert sich im Ölsumpf ab und fließt von dort automatisch geregelt zurück zum Verdichter bzw. zu den Verdichtern. Nähere Angaben siehe Abschnitt Ölrückführungssystem.

Bei externen Verflüssigungssystemen wird zum zusätzlichen Schutz vor Überfüllung ein Maximalfüllstandsmelder im Flüssigkeitsabscheider eingebaut.

Saugdruck und Kälteträgeraustrittstemperatur werden überwacht, so dass ein sicherer Schutz vor Einfrieren besteht.

Flüssigkeitsabscheider und Saugleitung werden mit einer wasserdampfdiffusionsdichten Isolierung ausgeführt.

Der Verdampfer kann optional mit einer abnehmbaren Isolierbox versehen werden.

Auslegung, Fertigung und Abnahme erfolgen nach Druckgeräterichtlinien.

Bei der Ausführung der Flüssigkeitskühlsätze als Verflüssigersatz entfällt der Verdampfer.

Die Dokumentation Verdampfer/ Flüssigkeitsabscheider (Betriebsanleitung, Abnahmezertifikat) ist Bestandteil der Produktdokumentation.

3.3.5 Verflüssiger

Im Verflüssiger wird der verdichtete Kältemitteldampf durch Abgabe der im Verdampfer und Verdichter aufgenommenen Wärmemenge an das Kühlmedium (Erwärmung) enthitzt und verflüssigt.

Die kassettengeschweißten Wärmeübertragerplatten aus Edelstahl AISI 316 (andere Werkstoffe auf Anfrage) werden mittels Spannbolzen zwischen Stativund Druckplatte zusammengespannt und an der oberen Tragstange und unteren Führungsstange fixiert.

Bei der Ausführung der Flüssigkeitskühlsätze als Verdampfersatz entfällt der wassergekühlte Verflüssiger. Der Kältemittelkreislauf wird hier anlagenseitig durch andere Verflüssigerbauarten komplettiert.

Der Kühlmediumzulauf wird unten angeschlossen und der Ablauf erfolgt am oberen Anschluss.

Wärmerückgewinnung (Option)

Je nach Kundenanforderung kann dem Verflüssiger ein Enthitzer vorgeschaltet werden. Der Enthitzer kann als reiner Gaskühler als auch als Teilkondensator ausgelegt werden. Zur Erzielung einer maximalen Wärmeaustauschfläche im Verflüssiger sollte das aus dem Enthitzer (Pos. 2900) kommende verflüssigte Ammoniak abgeleitet werden. Aus dem speziellen Abscheider-/ Niveaubehälter kann der flüssigkeitsfreie Dampf zum Verflüssiger strömen, um dort verflüssigt zu werden.

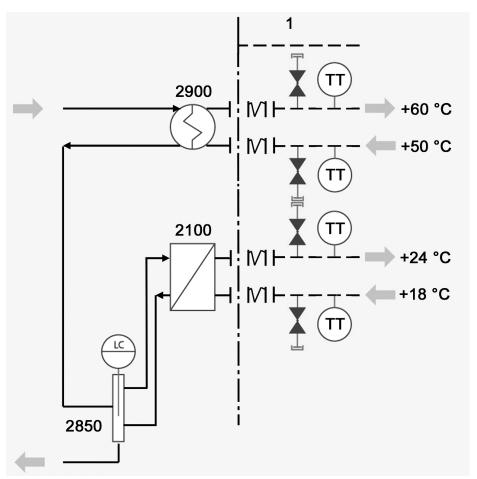


Abb.8: Wärmerückgewinnung

1	Kundenseitig
2900	Enthitzer
2100	Verflüssiger
2850	Niveaugeber

Die Dokumentation Verflüssiger (Betriebsanleitung, Abnahmezertifikat) ist Bestandteil der Produktdokumentation.

3.3.6 Schaltschrank mit Steuerung

Das Produkt ist standardmäßig mit einer Steuerung GEA Omni ausgerüstet.

Der Schaltschrank mit Steuerung besteht aus der Steuereinheit mit Bedien- und Anzeigeeinheit, den Meldeleuchten für "Betrieb", "Warnung" und "Störung", dem NOT-AUS-Taster, den Koppelelementen, sowie dem Gehäuse.

Der Schaltschrank mit Steuerung ist bei Motorleistungen bis 450 kW unmittelbar am Produkt montiert.

Bei bestimmten Produktbaureihen kann der Schaltschrank optional aus dem Lieferumfang entfernt werden, in diesem Fall ist nur die Steuerung GEA Omni in einem Steuerschrank am Produkt montiert.

Wird das Produkt drehzahlgeregelt betrieben (Standard bei den Baureihen der GEA Blu Chiller und der GEA Red Wärmepumpen), so ist der Frequenzumformer in den Schaltschrank integriert.

Achtung

Abhängig von der Motorgröße muss der Frequenzumformer (FU) in einem separaten Schrank verbaut werden. Anwendungsbedingt wird der komplette Schaltschrank in anderer Anordnung als abgebildet montiert, oder der FU-Schrank wird lose mitgeliefert.

▶ Details sind der projektspezifischen Spezifikation bzw. den Auftragszeichnungen zu entnehmen.

Nähere Details zum Funktionsumfang der Steuerung sind dem separaten Kapitel zur GEA Omni zu entnehmen.

Die Dokumentation der Steuerung (Betriebsanleitung, Elektroanschlussplan, Parameterliste, Kommunikationsrichtlinie) ist Bestandteil der Produkt-dokumentation.

Achtung

Detaillierte Informationen zur Kommunikation der Steuerung bietet die Kommunikationsrichtlinie.

▶ Die Kommunikationsrichtlinie kann im Vorfeld einer geplanten Installation zur Verfügung gestellt werden.

3.3.7 Armaturen

Eine Armatur bezeichnet allgemein ein Bedienelement eines Produktes. Der Begriff Armatur wird unter anderem auch für Ventile verwendet, die der Steuerung und Regelung von Fluidströmungen in Rohrleitungen dienen.

Im weiteren Sinne werden alle Arten von Einbauten in Rohrleitungen wie zum Beispiel Schaugläser, Messblenden, Filter und dergleichen mehr als Armatur bezeichnet. Zu den Armaturen zählen somit auch alle Arten von Ventilen wie beispielsweise

- Absperrventile
- Rückschlagventile
- Sicherheitsventile
- Drosselventile

Jede Armatur hat ihren Einsatzbereich nach dem in der Rohrleitung vorherrschenden Druck oder der Temperatur, nach der Größe der Rohrleitung, nach den Anforderungen der Dichtheit der Armatur, der Drosselung und der Richtung des Fluidstromes, sowie des Mediums selbst.

Die Sicherheitsarmaturen dienen zur Begrenzung des Druckes in druckbelasteten Anlagen.

Die Auslegung jeder Armatur erfolgt für die spezielle Anwendung. Die Armaturen können manuell von Hand oder motorisch, z.B. durch Getriebemotoren, Pneumatik- oder Hydraulikzylinder, betätigt werden. Bei Rückschlagarmaturen bewirkt der Fluidstrom in der Rohrleitung ein selbständiges Schließen des Ventils.

Je nach Bauart verschließen unterschiedliche Schließelemente (z.B. Ventilteller, Klappen, Scheiben) die an die Armatur angeschlossene Rohrleitung.

Die Dokumentation der Armaturen (Abnahmezertifikate) ist Bestandteil der Produktdokumentation.

3.3.8 Sicherheitseinrichtungen

Das Produkt besitzt eine umfangreiche Softwaresicherheitskette gegen zu hohe Drücke, Temperaturen und gegen die Gefahr des Einfrierens.

Eine Saug- sowie Kondensationsdruckregelung und eine Nennstrombegrenzungsregelung bewirken bei Überschreiten der einstellbaren Grenzwerte eine Drehzahlverringerung.

Verschiedene Abnahmegesellschaften verlangen aufgrund geltender Gesetze und Regeln eine umfangreiche Zusatzausstattung mit unabhängigen Sicherheitsgeräten.

Wird das Produkt nach EN 378 mit CE Zeichen geliefert, ist folgende Sicherheitsausstattung eingeschlossen:

- Überströmventil (am Verdichter) von der Druck- zur Saugseite,
- Doppel-Sicherheitsventil mit Abblaseanschluss, installiert auf der ND Seite des Produktes,

Achtung

Ordnungsgemäße Verlegung des Abblaseanschlusses.

- ▶ Der Abblaseanschluss muss vom Anlagenbauer gefahrlos ins Freie geführt werden.
- Sicherheitsdruckbegrenzer über 2 Schaltstufen mit manuellem inneren und äußeren Reset (anwendungsbedingt kann auch eine Schaltstufe ausreichen)
- Druckentlastungseinrichtung für jeden absperrbaren Behälter, der flüssiges Kältemittel enthalten kann.

Dies gilt für alle Behälter entsprechend den Vorgaben der Druckgeräterichtlinie.

Im Lieferumfang sind folgende Sicherheitseinrichtungen in Bezug auf Entweichen des Ammoniaks nicht enthalten:

- Schutzausrüstung (Gesundheits- und Arbeitsschutz)
- Gaswarngerät/ Gaswarnsensoren (bei den Baureihen GEA BluAir und GEA BluAir duo im Standard enthalten)

Bei der Lieferung nach EN 378 mit CE Zeichen werden alle in der Vorschrift geforderten Teile der Dokumentation in Landesssprache geliefert.

Verschiedene Abnahmen sind nach Rücksprache möglich.

3.3.9 Sicherheitseinrichtungen zur Druckbegrenzung

Die Sicherheitseinrichtungen zur Druckbegrenzung des Produktes entsprechen der EN 378-2.

Das Überströmventil zum Schutz des Verdichters ist entsprechend EN 13136 ausgelegt.

Der Abblasedruck der Sicherheitseinrichtung ist auf einen Druck ≤ maximal zulässigen Druck der Anlage eingestellt.

Die Abblaseleitung ist gemäß EN 13136 berechnet worden.

Die elektromechanischen Sicherheitsschalteinrichtungen zur Druckbegrenzung entsprechen der EN12263 und sind baumustergeprüft. Die Einstellungen entsprechen den Vorgaben der EN 378-2.

Werden elektronische Sicherheitsschalteinrichtungen zur Druckbegrenzung verwendet, kann die Einstellung aufgrund der erhöhten Präzision von den Standardvorgaben (siehe EN 378-2) abweichen.

Achtung

Der Betreiber ist bei der Verwendung von Sicherheitsventilen zur Druckentlastung verantwortlich für:

- ▶ die Berechnung der Dimensionierung der abblasenden Rohrleitungen ab dem Sicherheitsventil.
- ▶ die gefahrlose Ableitung von Kältemittel bei Ansprechen der Druckentlastungseinrichtung.

Die Sicherheitsausrüstungen zur Druckbegrenzung gemäß EN 378-2 stellen die Mindestanforderungen dar. Vor der Inbetriebnahme sind deshalb die Festlegungen aus den landeseigenen Betriebssicherheitsverordnungen mit denen der EN 378-2 zu vergleichen.

Für die sichere Funktion der Sicherheitseinrichtungen zur Druckbegrenzung müssen die festgelegten Prüffristen eingehalten werden. Diese ergeben sich aus den jeweiligen Betriebssicherheitsverordnungen.

3.3.10 Kundenseitig montierte Komponenten

Warnung!

Für entstehende Schäden und die Verletzung der Sicherheitsvorschriften, die aus der Verwendung ungeeigneter Werkstoffe oder durch eine Modifikation am Produkt entstehen, die im ursprünglichen Sicherheitskonzept nicht berücksichtigt wurden, übernimmt die GEA Refrigeration Germany GmbH keine Haftung.

▶ Durch den Kunden bereitgestellte und montierte Komponenten und Anlagenteile, insbesondere im Kälteträger- und Wärmeträger- bzw. Kühlmediumkreislauf sowie im Ölkreislauf, müssen in ihrer Werkstoffbeschaffenheit für die dort strömenden Fluide geeignet sein. Des Weiteren sind bei Modifikationen am Produkt durch den Kunden die Auswirkungen auf die Sicherheitseinrichtungen zu prüfen.

4 GEA Omni Steuerung

4.1 Produkt-Highlights

GEA steht für ausgefeilte Präzisionslösungen. Mit dem neuen Steuerungssystem GEA Omni stellt der Systemanbieter seine Technologieführerschaft und Innovation erneut unter Beweis.

Leistungsstark und praktisch, durchdacht und intuitiv, raffiniert und simple, einfach GEA Omni.

GEA Omni hält, was es verspricht: maximale Effizienz und einen zuverlässigen Betrieb der Anlage. Die Steuerung der nächsten Generation bindet alle wichtigen Komponenten einer Kälte- und Gasverdichtungsanlage ein. Dadurch ermöglicht sie einen bedarfsgerechten und besonders effizienten Betrieb der Anlage.

GEA Omni Vorteile auf einen Blick:

- · Anlagensteuerung mit einem Gerät
 - → Steuerung der Kälteanlage mit GEA Omni
- Hochauflösendes Display
 - → 1366 x 768 Pixel
- Multitouch Display
 - → Ergonomische und intuitive Eingabe
- · Einfache Integrierbarkeit
 - → Einfache Installation vor Ort, ideal für die Umrüstung von bestehenden Anlagen
- Konfigurierbare Modbus TCP Kommunikation
 - → Datenaustausch mit anderen Systemen ohne zusätzlichen Verkabelungsaufwand
- Hardware-Design
 - → Standard-Industriekomponenten mit modularem Aufbau
- Individuelle Benutzerprofile und -verwaltung
 - → Einrichtung individueller Benutzerprofile und Aufzeichnung getätigter Benutzereingaben
- Zeichnungen, Handbücher und Videos
 - ightarrow Technische Dokumentation einschließlich hilfreicher Videos direkt über das Touchpanel abrufbar
- Intelligente Serviceintervalle
 - → Rechtzeitige Benachrichtung von betriebsabhängigen Wartungsempfehlungen
- GEA OmniLink
 - → Anwendung zur Fernsteuerung der GEA Omni via Ethernet mit integrierter Datenübertragung
- GEA OmniHistorian

- → Anwendung zur Detailanalyse von aufgezeichneten Betriebsdatenverläufen
- · Globales Produkt mit lokalem Vertrieb und Service
 - → Weltweit verfügbares Produkt im einheitlichen Design
- Produktion in Nordamerika, Europa und Asien
 - → in über 25 Sprachen erhältlich
- Zuverlässigkeit mit GEA
 - \rightarrow Entwickelt, gefertigt und unterstützt vom Marktführer für Steuerungssysteme für Kälte- und Gasverdichtungsanlagen

4.2 Ansicht

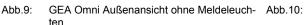


Abb.10: GEA Omni Außenansicht mit Meldeleuch-

4.3 Standardfunktion

Die GEA Omni unterstützt die folgenden Standardfunktionen:

 Anzeige aller wichtigen physikalischen und technischen Parameter, z.B. Druck, Temperatur, Motorstrom, Leistung, Anzahl der Betriebsstunden, Betriebsart und Statussignale.

Verschiedene Parameter und Menüs werden ausgeblendet, sofern diese nicht benötigt werden.

- Start-/Stoppautomatik des Produktes und Leistungsregelung in Abhängigkeit von beispielsweise:
 - Saugdruck
 - Enddruck
 - Externer Druck
 - Externe Temperatur
 - Netzwerktemperatur

- Eintrittstemperatur (Verdampfer, Kälteträger)
- Austrittstemperatur (Verdampfer, Kälteträger)
- Eintrittstemperatur (Verflüssiger, Kühlmedium bzw. Wärmeträger)
- Austrittstemperatur (Verflüssiger, Kühlmedium bzw. Wärmeträger)
- Überwachung aller Betriebsparameter.
- Begrenzung der Verdichterleistung, sobald einer der definierten Grenzwerte erreicht bzw. überschritten wird.
- Benachrichtigungsverlauf (Meldungen, Warnungen und Störungen) mit Datum und Uhrzeit.
- Erkennung von Leitungsbrüchen für alle analogen Eingangssignale.
- Passwortschutz gegen unbefugten Zugriff auf wichtige Parameter
- Speicherung der Software, Konfiguration und Einstellungen im nichtflüchtigen Speicher.
- Regelung erfolgt durch eine übergeordnete Steuerung über potentialfreie Kontakte.
- Programm auf CFast Karte nichtflüchtig gespeichert.
- Kommunikationsmöglichkeit mit übergeordneter Steuerung über Modbus TCP, Ehternet/IP.
 - (optional über Profibus-DP und ProfiNet)
- Fernzugriff (optional über Ethernet)

4.4 Bestandteile der GEA Omni

- Schaltschrank (verschiedene Größen und Montageoptionen, siehe IEC Standard IP54 / NEMA 4 Mindestklassifizierung)
- Schaltschrank mit:
 - Industrie PC mit Multitouch-Bildschirm und HD-Display für die Bedienung
 - NOT-AUS-Schalter direkt verbunden mit den Steuerausgängen, um alle rotierenden Komponenten sofort ausschalten zu können
 - USB Schnittstelle mit IP54 Abdeckung für den Datenaustausch mit dem Industrie PC
 - Optionale Meldeleuchten für:
 - → "Betrieb" für Statusanzeigen Start, Betrieb oder Stop des Verdichters
 - → "Warnung" für die Anzeige, dass eine Betriebsbedingung den Grenzwert für eine Warnung überschritten hat
 - ightarrow "Störung" für die Anzeige, dass der Verdichter abgeschaltet ist
- Schaltschrank Innenansicht:
 - Stromversorgung f
 ür den Industrie PC, Eingangs- und Ausgangsschaltkreise und Sensoren

- Frequenzumformer (je nach Produkt optional oder Standard)
- I/O System als Schnittstelle für alle überwachten digitalen und analogen Eingänge und geregelten Ausgänge
- Anschlüsse für eingehende Stromversorgung und Verkabelungsanschlüsse
- Sicherungen und Trennschalter als Kurzschluss- und Überspannungsschutz; Industrie PC und I/O Logik sind mit einer Sicherung geschützt; die Stromversorgungen der Steuerung und der Sensoren sind durch Trennschalter geschützt
- Kabelkanäle als Führung für die interne Verkabelung

Abb.11: GEA Omni Schaltschrank Innenansicht (Frequenzumformer im Schaltschrank eingebaut)

Ein- und Ausgangssignale 4.5

Niederspannungsschaltanlage - GEA Omni						
von der Niederspannungsschaltanlage zur GEA Omni EINGÄNGE		von der GEA Omni zur Niederspannungsschaltanlage AUSGÄNGE				
Entfällt, wenn die Niederspannungsschaltanlage im Lieferum			ang enthalten ist.			
Einspeisung	: 100 .	240 V, 50/60 Hz				
digital	•	Rückmeldung Verdichter Motorschutz Verdichter Rückmeldung externe Ölpumpe ⁷	digital	•	Startbefehl Verdichter Startbefehl extern Ölpumpe ⁷ Störungsquittierung	
analog (4-20 mA)	•	Motorstrom Verdichterantriebsmotor Drehzahl Verdichterantriebsmotor ⁸	analog (4-20 mA)	•	Sollwert Drehzahl Verdichterantriebsmotor ⁸	

Zentralsteuerung oder Leitsystem - GEA Omni					
von der Zentralsteuerung (Leitsystem) zur GEA Omni EINGÄNGE		von der GEA Omni zur Zentralsteuerung (Leitsystem) AUSGÄNGE			
digital	•	extern Ein/ Aus	digital	•	Meldung Bereit für den externen Betrieb
	•	extern Leistung erhöhen		•	Meldung Betrieb
	•	extern Leistung verringern		•	Sammelstörung
	•	externe Startfreigabe		•	frei konfigurierbarer Ausgang 1
	•	extern Störung quittieren			(Standardeinstellung Sammelwarnung)
	•	Umschaltung 2. Sollwert			
	•	Verdichter blockieren			
analog (4-20 mA)	•	externer Sollwert	analog (4-20 mA)	•	Fördervolumen

Falls vorhanden. Nur bei Betrieb mit Frequenzumformer.

von der Kälteanlage/ Wärmepumpe zur GEA Omni EINGÄNGE		von der GEA Omni zur Kälteanlage/ Wärmepumpe AUSGÄNGE			
digital		extern NOT-AUS (oder NOT-HALT)	digital:		Magnetventil Leistungsregelung max ¹¹
	•	Abscheiderniveau ⁹			Magnetventil Leistungsregelung min ¹¹
	•	Eco-Niveau ⁹			Magnetventile Leistungsregelung 12
	•	Gassensor			Magnetventil Rückschlagventil Saugseite ⁹ ,
	•	Enddruck-Sicherheitsschalter			Magnetventile Vi-Regelung ⁹ , ¹¹
	•	Ölstand min. ¹⁰			Magnetventil Economizerbetrieb ⁹
	•	Ölstand max. ¹⁰			Magnetventil Anfahrentlastung ⁹
	•	Niveau Kältemittel oben / unten ⁹			Magnetventile Ölrückführung
					Magnetventil ND-HD Entspannung ⁷
				•	Magnetventil Ölrückführung aus Ölfeinab- scheidestufe ⁷
analog (4-20 mA)		Regel- / Primärschieberposition 11	analog (4-20 mA)	•	Sollwert Niveauregelung ⁹
(4-20 IIIA)	•	Vi- / Sekundärschieber Position ⁹ , ¹¹	(4-20 IIIA)	•	Sollwert IntelliSOC Einspritzventil ⁹
	•	Saugdruck		•	Sollwert Motorventil Saugleitung ⁷
	•	Enddruck		•	Sollwert Motorventil Remote-Verflüssiger
	•	Öldruck			Regelung ⁷
	•	Druck nach Ölfilter ¹¹		•	Sollwert Motorventil Heißgasbypass Anlauf- entlastung ⁷
	•	Kurbelgehäusedruck ¹²			Childstong
	•	Verdampfungsdruck ¹³			
	•	Saugtemperatur			
	•	Endtemperatur			
	•	Öltemperatur			
	•	Öltemperatur Ölabscheidersumpf ⁷			
	•	Öltemperatur Verdichter ein / aus ¹⁴			
	•	Temperatur Eco ⁷			
	•	Druck Eco ⁷			
	•	Kälteträgertemperatur ein/aus ¹⁵			
	•	Temp. Eintritt Kältemittel ND-Kälteanlage ¹⁶			
	•	Temp. Austritt Kältemittel ND-Kälteanlage ¹⁷			

⁹ Die Signale beziehen z.T. auf optionale Ausstattungsmerkmale (nicht für alle Produkte verfügbar).

¹⁰ Bei Schraubenverdichter, optional.

¹¹ Abhängig vom Verdichtertyp.

¹² Bei Hubkolbenverdichter.

¹³ Bei Wärmepumpen mit saugseitigem Motorventil.

¹⁴ Bei Wärmepumpen mit Hubkolbenverdichter.

¹⁵ Bei Wärmepumpen mit Wasser-/Sole-basierter Wärmequelle.

¹⁶ Bei Wärmepumpen mit Wärmequelle aus NH₃-Verflüssigung der Niederdruck-Kälteanlage.

¹⁷ Bei Wärmepumpen mit Wärmequelle aus NH3-Verflüssigung der Niederdruck-Kälteanlage (wird bei Erzeugnissen der Baureihe GEA Blu-Red Fusion durch den Endtemperatur-Sensor der ND-Stufe ersetzt).

Flüssigkeitskühlsatz/ Wärmepumpe - GEA Omni

von der Kälteanlage/ Wärmepumpe zur GEA Omni

EINGÄNGE

• Wärmeträger-/ Kühlmedium-Temperaturen 18

Bei Wärmepumpen Wärmeträger Temperatursensoren ein/aus für jeden Wärmeübertrager Standard, bei Flüssigkeitskühlsätzen optional, nur jeweils 1x Ein-/ Austritt in das / aus dem Erzeugnis.

5 Technische Daten

5.1 Abmessungen, Massen, Füllmengen und Anschlüsse

Achtung

Alle Kenndaten sind vorbehaltlich und nur zum ersten Überblick.

- ▶ Alle Abbildungen und Daten beziehen sich auf die Grundausstattung der GEA Grasso Produkte. (Sonder-) Optionen wie zum Beispiel Economizer Behälter, Ölnachabscheider können sich entsprechend auf Füllmengen, Abmessungen und Gewichte auswirken.
- ► Technische Änderungen, durch Weiterentwicklung oder Lieferantenwechsel der in dieser Produktinformation behandelten Produkte, behält sich die GEA Refrigeration Germany GmbH vor.
- ► Abbildungen und Zeichnungen in dieser Produktinformation sind vereinfachte Darstellungen.
- ▶ Die technischen Angaben und Abmessungen sind unverbindlich. Ansprüche daraus können nicht abgeleitet werden.
- ► Genauere Angaben enthält das jeweilige technische Angebot zu einem der aufgeführten Produkte.

5.1.1 GEA Grasso FX GC PP 260 bis GEA Grasso FX GC PP 1250

Achtung

Die Daten gelten für folgende Bedingungen:

- ► Kälteträgertemperatur + 12 °C/ + 6 °C
- ► Kühlmitteltemperatur + 27 °C/ + 32 °C

Für andere Bedingungen können sich abweichende Daten ergeben.

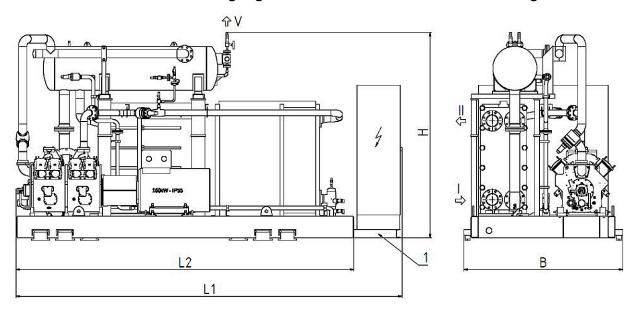


Abb.12: Satzzeichnung GEA Grasso FX GC PP

I	Kälteträgereintritt Verdampfer
II	Kälteträgeraustritt Verdampfer
III	Kühlmediumeintritt Verflüssiger
IV	Kühlmediumaustritt Verflüssiger
V	Abblaseleitung Sicherheitsventil
1	Bei Aufstellung vor Ort Transportkonsole demontieren und E-Schrank auf Fundament absetzen
	Einführung der Kraftzuführung und Steuerleitungen (kundenseitig) von unten

Kenngrößen										
Barranatan		Flüssigkeitsl	Flüssigkeitskühlsatz GEA Grasso FX GC PP							
Parameter		260 ¹⁹ 400 ¹⁹ 525 ¹⁹		525 ¹⁹	600 ¹⁹	900 ¹⁹	1250 ¹⁹			
Länge L1	mm	3750	4000	4300	5200	5450	5700			
Länge L2	mm	3000	3250	3600	4500	4750	5000			
Breite B	mm	2000	2000	2000	2300	2300	2300			
Höhe H	mm	2700	2750	2850	3200	3300	3500			
Kälteleistung Q ₀	kW	277	415	554	638	957	1276			
Leistungsaufnahme Verdichter P _{eff}	kW	48,1	71,2	94,3	103,4	153,3	203,6			
Leermasse m _L	kg	4100	4600	5750	6300	8250	11500			
Betriebsmasse m _B	kg	4250	4750	6000	6550	8600	11900			
Kältemittelfüllmenge NH ₃	kg	38	42	48	61	83	135			
Ölfüllmenge V _{ÖL}	ı	17	23,9	34,6	22,4	31,9	55,1			
Kälteträgerinhalt	I	27	40	54	62	91	136			
Kühlmediuminhalt	Ţ	28	40	71	83	132	150			
Kälteträgeranschlüsse 20	DN	100	100	100	100	100	150			
Kühlmediumanschlüsse 20	DN	100	100	150	150	150	250			
GEA Grasso Verdichter	Тур	V300	V450	V600	V700	V1100	V1400			
Leistungsstufen LS	%	25/50/75 /100	33/50/67 /83/100	25/37/50 /62/75 /87/100	25/50/75 /100	33/50/67 /83/100	25/37/50 /62/75 /87/100			

Elektrische Daten Verdichtermotor - 1000-1500 min ⁻¹ , 400 V / 3 Ph / 50 Hz ²¹ , IP 23, luftgekühlt									
Parameter		Flüssigkeitskühlsatz GEA Grasso FX GC PP							
		260	400	525	600	900	1250		
Nennleistung ²² P _n	kW	55	90	110	132	200	250		
Nennstrom bei 400 V I _n	Α	97,5	159	195	251	371	466		
Relativer Anlauftrom ²³ I _a /I _n		6,5	6,5	7,5	6,8	6,8	6		
Schaltschrank Krafteinspeisung		3 PEN / 400 V, interne Steuerspannung: 230 V / 50 Hz / 24 VDC							
Zuleitungsquerschnitt	mm ²	70	120	185	185	2x120	2x150		
Vorsicherung	Α	160	250	315	315	400	500		

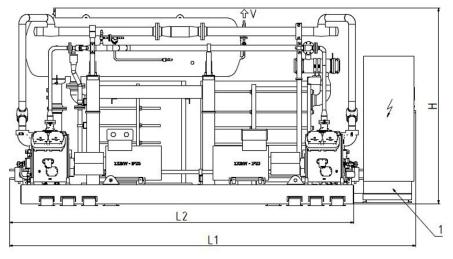
¹⁹ vorbehaltlich technischer Änderungen

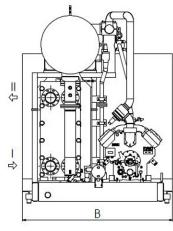
Anschlussflansche für Kälteträger und Kühlmedium nach DIN 2633 (entspricht ISO PN 16) Eurospannungsbereich ± 10 %, andere Spannungen / Frequenzen auf Anfrage für Wasserein- austritt 12/6 °C, bei anderen Konditionen Abweichung der Motorleistung bei Y - Δ – Anlauf reduzieren sich die Einschaltwerte auf 30 %

²¹

²²

²³


5.1.2 GEA Grasso FX GC PP 520 duo bis GEA Grasso FX GC PP 1800 duo


Achtung

Die Daten gelten für folgende Bedingungen:

- ► Kälteträgertemperatur + 12 °C/ + 6 °C
- ► Kühlmitteltemperatur + 27 °C/ + 32 °C

Für andere Bedingungen können sich abweichende Daten ergeben.

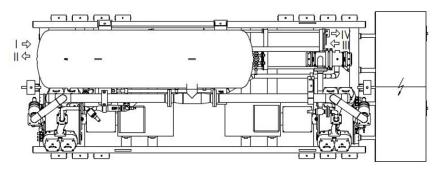


Abb.13: Satzzeichnung GEA Grasso FX GC PP duo

I	Kälteträgereintritt Verdampfer
II	Kälteträgeraustritt Verdampfer
III	Kühlmediumeintritt Verflüssiger
IV	Kühlmediumaustritt Verflüssiger
V	Abblaseleitung Sicherheitsventil

Kenngrößen								
Barrandan		Flüssigkeitskühlsatz GEA Grasso FX GC PP duo						
Parameter		520 ²⁴ 650 ²⁴		800 ²⁴	900 ²⁴			
Länge L1	mm	4100	4400	4600	5100			
Länge L2	mm	3000	3250	3600	4500			
Breite B	mm	2000	2000	2200	2200			
Höhe H	mm	2350	2450	2600	3150			
Kälteleistung Q ₀	kW	554	690	830	969			
Leistungsaufnahme Verdichter P _{eff}	kW	96,2	119,3	142,4	165,5			
Leermasse m _L	kg	5450	7200	8150	9100			
Betriebsmasse m _B	kg	5600	7450	8350	9400			
Kältemittelfüllmenge NH ₃	kg	53	73	90	106			
Ölfüllmenge V _{ÖL}	I	34	40,9	47,8	58,5			
Kälteträgerinhalt	1	54	60	70	91			
Kühlmediuminhalt	I	58	65	65	132			
Kälteträgeranschlüsse ²⁵	DN	100	100	100	100			
Kühlmediumanschlüsse ²⁵	DN	100	100	100	150			
GEA Grasso Verdichter	Тур	V330+V300	V450+V300	V450+V450	V600+V450			
Leistungsstufen LS	%	25/38/50 /63/75/ 87/100	20/30/40 / 50/60 / 80/100	16/25/33 / 42/50/66 / 75/83/92 /100	14/28/43 / 50/57/71 /78/86/ 92/100			

Elektrische Daten Verdichtermotor - 1000-1500 min ⁻¹ , 400 V / 3 Ph / 50 Hz ²⁶ , IP 23, luftgekühlt								
Parameter		Flüssigkeitskühlsatz GEA Grasso FX GC PP duo						
		520	520 650		900			
Nennleistung ²⁷ P _n	kW	55+55	90+55	90+90	110+90			
Nennstrom bei 400 V I _n	Α	97,5+97,5	159+97,5	159+159	195+159			
Relativer Anlauftrom ²⁸ I _a /I _n		6,5/6,5	6,5/6,5	6,5/6,5	7,5/6,5			
Schaltschrank Krafteinspeisung		3 PEN / 400 V, interne Steuerspannung: 230 V / 50 Hz / 24 VDC						
Zuleitungsquerschnitt	mm ²	120	185	2x120	2x120			
Vorsicherung	Α	250	315	400	400			

²⁴ vorbehaltlich technischer Änderungen

²⁵ Anschlussflansche für Kälteträger und Kühlmedium nach DIN 2633 (entspricht ISO PN 16)

²⁶

Eurospannungsbereich ± 10 %, andere Spannungen / Frequenzen auf Anfrage für Wasserein- und austritt 12/6 °C, bei anderen Konditionen Abweichung der Motorleistung bei Y - Δ – Anlauf reduzieren sich die Einschaltwerte auf 30 % 27

²⁸

Kenngrößen								
.		Flüssigkeitskühlsatz GEA Grasso FX GC PP duo						
Parameter		1050 ²⁴	1200 ²⁴	1500 ²⁴	1800 ²⁴			
Länge L1	mm	5500	6200	6700	7100			
Länge L2	mm	4750	5400	5900	6400			
Breite B	mm	2200	2300	2300	2300			
Höhe H	mm	3150	3300	3700	3800			
Kälteleistung Q ₀	kW	1108	1276	1595	1914			
Leistungsaufnahme Verdichter P _{eff}	kW	188,6	206,8	256,7	407,2			
Leermasse m _L	kg	9500	12500	13600	14900			
Betriebsmasse m _B	kg	10000	13000	14100	15500			
Kältemittelfüllmenge NH ₃	kg	115	175	222	240			
Ölfüllmenge V _{ÖL}	I	69,2	44,8	54,3	63,8			
Kälteträgerinhalt	I	105	136	178	234			
Kühlmediuminhalt	1	157	149	190	230			
Kälteträgeranschlüsse ²⁵	DN	100	150	150	150			
Kühlmediumanschlüsse ²⁵	DN	150	250	250	250			
GEA Grasso Verdichter	Тур	V600+V600	V700+V700	V1100+V700	V1100+V1100			
Leistungsstufen LS	%	18/25/43 /50/56/ 68/75/81 / 93/100	25/38/50 /63/75/ 87/100	20/30/40 / 50/60 / 80/100	16/25/33 / 42/50/66 / 75/83/92 /100			

Elektrische Daten Verdichtermotor - 1000-1500 min ⁻¹ , 400 V / 3 Ph / 50 Hz ²⁶ , IP 23, luftgekühlt								
Parameter		Flüssigkeitskühlsatz GEA Grasso FX GC PP duo						
		1050	1050 1200 15		1800			
Nennleistung ²⁷ P _n	kW	110+110	132+132	200+132	200+200			
Nennstrom bei 400 V I _n	Α	195+195	251+251	371+251	371+371			
Relativer Anlauftrom ²⁸ I _a /I _n		7,5/7,5	6,8/6,8	6,8/6,8	6,8/6,8			
Schaltschrank Krafteinspeisung		3 PEN / 400 V, interne Steuerspannung: 230 V / 50 Hz / 24 VDC						
Zuleitungsquerschnitt	mm ²	2x150	3x120	3x150	3x185			
Vorsicherung	Α	500	630	800	800			

5.2 Einsatzgrenzen

Die Ammoniak-Flüssigkeitskühlsätze für überflutete Verdampfung können innerhalb der angegebenen Einsatzgrenzen nach den jeweils vorliegenden Anforderungen unter verschiedensten Arbeitsbedingungen betrieben werden. Die aufgezeigten Einsatzgrenzen basieren auf dem Arbeitsprinzip des Hubkolbenverdichters, den thermodynamischen Zusammenhängen und den eingesetzten Behältern und Sicherheitseinrichtungen sowie den praktischen Einsatzbedingungen.

Parameter	Einheit	W	ert	
Saugdruck	p ₀	bar (a)	min max	0,7 7,0
Austrittstemperatur Kälteträger Wasser	t _{KA}	°C	min max	+3 +15
Austrittstemperatur mit frostbeständigen Kälteträgern	t _{KA}	°C	min max	-15 +15
Verflüssigungsdruck	p _c	bar (a)	min max	10 23
Eintrittstemperatur Kühlmedium	t _{WE}	°C	min max	+20 +45

Die angegebenen Einsatzgrenzen gelten für den Betrieb bei Volllast.

Teillastbetrieb kann zur Einschränkung der Einsatzgrenzen führen und ist im konkreten Einsatzfall zu prüfen.

Begrenzung der Kälteträgereintrittstemperatur.

- ▶ Während des Betriebes des Flüssigkeitskühlsatzes ist die Erhöhung der Kälteträgereintrittstemperatur innerhalb von 2 Minuten auf max. 3 K zu begrenzen. Die Nichteinhaltung dieser Grenze zur zeitlich zugelassenen Temperaturänderung kann zum Abschalten des Flüssigkeitskühlsatzes führen!
- ➤ Zur Einhaltung dieser Laständrungsgeschwindigkeit muss bauseits ein geeigneter Kälteträgerspeicher installiert sein.

Sollen für einen speziellen Anwendungsfall die angegebenen Grenzen überschritten, so ist der Hersteller zu konsultieren.

Neben den in den Tabellen aufgeführten Einsatzgrenzen sind die einzuhaltenden Betriebsbedingungen des jeweiligen Verdichtertyps zu berücksichtigen (z.B. Startregime, Öldruck, Ölmenge, Ölsorte usw.).

Die angegebenen Daten beziehen sich auf die Betriebsbedingungen einer Kälteoder Klimaanlage. Während des Stillstandes oder im Anfahrzustand kann es zum kurzfristigen (nie dauerhaften) Über- oder Unterschreiten der Grenzwerte kommen.

5.3 Anforderungen an die Wasserqualität, Grenzwerte

Bei Einhaltung der in der VDI 3803 Ausgabe 2010-02 (Tabelle B3) empfohlenen Grenzwerte für Umlaufwasser und einer entsprechenden Wasserbehandlung ist ein optimaler Betrieb und somit der Schutz vor Korrosion für alle wasserführenden Komponenten des Herstellers gegeben.

Achtung

Bei Nichteinhaltung der in der VDI 3803 genannten Grenzwerte kann der Hersteller keine Gewährleistung bezüglich der wasserführenden Teile seiner gelieferten Komponenten übernehmen.

▶ Die Abklärung, ob mit den jeweils vorliegenden Wasserverhältnissen die Einhaltung dieser Grenzwerte möglich ist, sollte in der Phase der Planung und Ausführung zusammen mit einer Fachfirma getroffen werden.

Nachfolgend sind die übereinstimmend mit der VDI 3803 geforderten Grenzwerte für den Einsatz von C-Stahl in Umlaufwasserkreisläufen aufgeführt.

Anforderungen an die Wasserqualität, Grenzwerte							
Parameter		Wert	Einheit				
Aussehen		klar, ohne Bodensatz					
Farbe		farblos					
Geruch		ohne					
pH-Wert bei 20 °C		7,5 - 9,0					
elektrische Leitfähigkeit	LF	< 220	mS/m				
Erdalkalien	Ca ²⁺ , Mg ²⁺	< 0,5	mol/m³				
Gesamthärte, bei Stabilisierung	GH	< 20	°d				
Karbonathärte ohne Einsatz von Härtestabilisierungsmitteln	КН	< 4	°d				
Chlorid (siehe auch nachfolgende Informationen)	CI	< 150	g/m³				
Sulfat	SO ₄	< 325	g/m³				
Kolonienbildende Einheiten	KBE	< 10.000	pro ml				
Eindickungszahl	EZ	2 - 4					

Der Einsatz von Stahl und Guss macht in den meisten Fällen eine Nachbehandlung des Wassers mit Korrosionsinhibitoren notwendig.

Beim Einsatz von höher legierten Stählen in wasserführenden Teilen von Kälteund Klimakomponenten ist insbesondere der Chloridgehalt im umlaufenden Wasser zu überwachen (Gefahr der Spannungsriss- und Lochkorrosion).

Achtung

Empfehlung bei Einsatz von Plattenwärmeübertragern

- ► < 100 ppm Cl bei Einsatz von 1.4301 (AISI 304) und maximal 40 °C Wandtemperatur im Plattenwärmeübertrager
- ► < 200 ppm Cl bei Einsatz von 1.4401 (AISI 316) und maximal 100 °C Wandtemperatur im Plattenwärmeübertrager

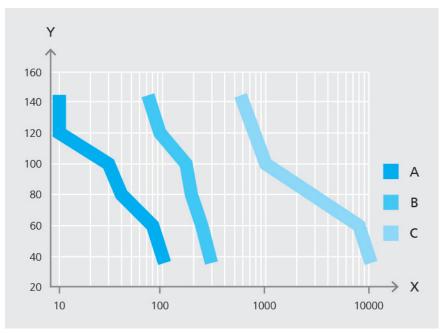


Abb.14: Korrosionsbeständigkeit bei Anwesenheit von Chloriden

X	Chloridionenkonzentration ppm Cl ⁻
Υ	Wandtemperatur Wärmeübertrager in °C
Α	AISI 304
В	AISI 316
С	SMO 254

Achtung

Empfehlung des Herstellers: Verwendung unverschmutzter Kälteträger und Kühlmedien insbesondere bei Flüssigkeitskühlsätzen / Wärmepumpen und dem Einsatz von Plattenwärmeübertragern.

- ▶ Durch bauseits montierte, geeignete Filter am Eintritt der Wärmeübertrager muss die Medienqualität gesichert werden. Die Maschenweite derartiger Filter muss ≤ 0,9 mm sein!
- ▶ Soll die Anlage bei anstehender Filterreinigung in Betrieb bleiben, sind Doppelfilter vorzusehen. Druckverluste durch Filter sind bauseits bei Pumpenauslegung zu berücksichtigen.

Der Hersteller nennt Ihnen auf Anforderung gern qualifizierte Fachbetriebe, die Sie bei der Wasseranalyse und den sich daraus ableitenden Maßnahmen unterstützen können.

5.4 Leistungsparameter

Achtung

Die Leistung eines Flüssigkeitskühlsatzes hängt von verschiedenen Parametern ab, zum Beispiel:

- · dem Temperaturregime,
- · der Effizienz der verwendeten Wärmeübertrager,
- · der Verdichterdrehzahl,
- der Verflüssigerbauart.
- ▶ Die Ansprechpartner der GEA Refrieration Germany GmbH erstellen ihnen gerne ein technisches Angebot.

5.5 Angaben zur Geräuschemission

Ermittlung der Messwerte:

- Ohne sekundären Schallschutz.
- Bei Einsatz einer Vollkapselung sind diese Werte in den Tabellen um 25-30 dB zu mindern.

Achtung

Der Schalldruckpegel unterliegt starken Abhängigkeiten von der Ausführung des Flüssigkeitskühlsatzes insbesondere des Antriebsmotors (Hersteller, Typ, Schutzart).

▶ Deshalb gelten die Werte in den Tabellen lediglich als Richtwerte und sind durch die Technische Spezifikation zu einem Projekt zu bestätigen.

Baugröße FX GC PP	Gesamtschalld- ruckpegel ²⁹	Schallleistung LWA [dB(A)]	Oktav- Schalldruckpegel L _{POkt} [dB]									
	LP [dB(A)]				mittleı	e Schallf	requenz	f _m [Hz]				
			63	125	250	500	1000	2000	4000	8000		
260	75	90	81	89	92	90	87	85	83	77		
400	78	92	91	89	85	92	91	87	85	79		
525	80	96	83	95	94	97	93	84	83	82		
600	83	101	87	98	101	97	98	93	88	86		
900	83	101	88	99	101	99	98	94	88	86		
1250	83	101	88	99	101	99	98	94	88	86		
520 duo	79	93	84	92	95	93	90	88	86	80		
650 duo	81	94	84	92	93	94	92	89	87	81		
800 duo	81	95	84	92	88	95	94	90	88	82		
900 duo	84	97	85	96	95	98	95	89	87	84		
1050 duo	86	99	86	98	97	100	96	87	86	85		
1200 duo	87	103	90	100	102	100	101	95	100	88		
1500 duo	88	104	90	101	104	100	101	96	91	89		
1800 duo	88	104	91	102	104	101	101	97	91	89		

²⁹ Messabstand 1 m; Klima- und Wärmepumpenbereich Toleranzen bis zu +3 dB

6 Anfrageformular

GEA Refrigeration Germany GmbH liefert Produkte mit hoher Qualität und Zuverlässigkeit. Jedes Produkt ist im Hinblick auf die jeweiligen Projektanforderungen individuell konfiguriert, konstruiert und gefertigt.

Sie suchen für Ihre Anwendung die optimale Lösung? Kontaktieren Sie den GEA Vertrieb und erhalten auf Wunsch ein Anfrageformular, in dem Sie Ihre Anforderungen auch ganz bequem elektronisch eintragen und absenden können.

Eine Übersicht der Vertriebsbüros und Ansprechpartner finden Sie unter:

www.gea.com

6.1 Herstelleranschrift

GEA Refrigeration Germany GmbH ist eine Gesellschaft der GEA Group AG und bietet seinen Kunden weltweit hochwertige Komponenten und Dienstleistungen für kälte- und prozesstechnische Anwendungen an.

Standorte:

GEA Refrigeration Germany GmbH

Werk Berlin

Holzhauser Str. 165 13509 Berlin, Germany

Tel.: +49 30 43592-600

Fax: +49 30 43592-777

Web: www.gea.com

E-Mail: refrigeration@gea.com

GEA Refrigeration Germany GmbH

Werk Halle

Berliner Straße 130

06258 Schkopau/ OT Döllnitz, Germany

Tel.: +49 345 78 236 - 0 Fax: +49 345 78 236 - 14

Web: www.gea.com

E-Mail: refrigeration@gea.com

GEA Refrigeration Germany GmbH Holzhauser Str. 165 13509 Berlin , Deutschland

Telefon +49 30 43592-600

Copyright © GEA Refrigeration - All rights reserved - Subject to modifications.