Cooling & Quenching

Gas conditioning tower (GCT)

Process cooling and Zero Liquid Discharge (ZLD) with Gas Conditioning Towers (GCT)

Gas conditioning towers (GCT) are used in industrial applications to cool gases upstream of electrostatic precipitators / bag filters for effective temperature control, gas volume reduction and humidification by the evaporation of water. GEA provide the two available atomization technologies utilized in the evaporative cooling process are hydraulic atomization and twin-fluid atomization. Key parameter for GCT sizing is in addition to the amount of flue gas, inlet and outlet temperature mainly the attainable droplet size and the associated energy consumption.

Key features:

  • Low maintenance and low maintenance costs
  • Compact design
  • Cleaning function available only after a specific deadtime

Working Principle

Working Principle of Gas Conditioning Towers
gas-conditioning-tower-2d-working-principle

Hydraulic atomization with single fluid, spillback nozzles with larger droplet sizes provide less energy consumption but require a larger casing design and more purity on the cooling water. The amount of liquid injected is adjusted via a control valve in the spillback line, whereby part of the flow is taken from the inlet flow rate and returned to the buffer tank. 

Twin fluid technology utilizes compressed air or steam to atomize the water into droplets via a spray injection nozzle/lance as well. The water and compressed air (the two fluids) combine inside the nozzle and exit into the flue gas stream. Smaller droplet sizes lead to smaller casing design and even wastewater can be used for Zero Liquid Discharge (ZLD) where recovered waste heat supports efficient evaporation of water for compliance with wastewater discharge limits.

The GCT casing structural design covers full under pressure of ID fan and is providing adequate gas distribution with deflection-, guide- and perforated sheets in the inlet area.

The transport of dust from the housing is taken into account for possible malfunctions with a reversible paddle screw and motor-driven double pendulum flaps on both sides.

baghouse-gas-conditioning-towers

GEA 洞察

通过可持续制冷保证面向未来的冷链

优质冷链管理的重要性不可低估。确保易腐食品在食用时安全且高质量是冷链设施运营商的巨大责任。GEA 处于为冷库和配送中心提供安全、可持续制冷技术的前沿,帮助客户减少其设施的能源消耗和碳排放。

Josep Masramón and his daughter stand in front of their GEA batch milking installation.

批量挤奶如何支持现代奶牛养殖业

自动挤奶的最新发展引入了批量挤奶 – 一种在固定挤奶时间将奶牛分组挤奶的奶牛养殖实践,通常每天两次到三次。自动化技术正在帮助奶农克服近期的挑战,平衡奶牛场的奶牛福利、灵活性和可持续性,同时不断优化其成本结构并实现越来越高效的优势。

从稀薄的空气中

在许多国家/地区,获得安全用水和卫生设施体系仍然是一个挑战。由于饮用水不干净以及每天长途跋涉取水而生病,意味着许多儿童无法上学。GEA 通过与汉堡非营利组织 Viva con Agua 合作,使用一些非常神奇的技术帮助为坦桑尼亚的几所学校提供干净的水。

接收 GEA 新闻

订阅 GEA 的新闻,掌握 GEA 的创新信息和故事。

联系我们

我们随时为您提供帮助!您只需提供少量详细信息,我们就能回复您的查询。